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SUMMARY
Animals adaptively integrate sensation, planning, and action to navigate toward goal locations in ever-chang-
ing environments, but the functional organization of cortex supporting these processes remains unclear. We
characterized encoding in approximately 90,000 neurons across the mouse posterior cortex during a virtual
navigation task with rule switching. The encoding of task and behavioral variables was highly distributed
across cortical areas but differed in magnitude, resulting in three spatial gradients for visual cue, spatial po-
sition plus dynamics of choice formation, and locomotion, with peaks respectively in visual, retrosplenial, and
parietal cortices. Surprisingly, the conjunctive encoding of these variables in single neurons was similar
throughout the posterior cortex, creating high-dimensional representations in all areas instead of revealing
computations specialized for each area.We propose that, for guiding navigation decisions, the posterior cor-
tex operates in parallel rather than hierarchically, and collectively generates a state representation of the
behavior and environment, with each area specialized in handling distinct information modalities.
INTRODUCTION

As an animal navigates an ever-changing environment, it adap-

tively incorporates acquired sensory information into a navigation

plan to guide its movements. The neural circuits supporting this

behavior must integrate sensory processing, navigation planning,

and motor execution, and furthermore adapt the rules governing

their integration in response to experience. Evidence in rodents

suggests densely interconnected dorsal-posterior cortical areas

are critical for visually guided and navigation-based decision-

making, including the primary (V1) and secondary visual cortices,

retrosplenial cortex (RSC), and posterior parietal cortex (PPC)

(Zingg et al., 2014). However, it remains uncertain how the set of

processes for navigation-based decision-making is represented

across the posterior cortex and what principles specify the func-

tional organization of these areas.

A longstanding view is that the cortex is organized as anatomi-

cally and functionally distinct modules that encode different infor-

mation, reflecting their specialized functions. Accordingly, many

studies have aimed to identify how specific areas contribute to

behavior by identifying the variables each area encodes. For

example, visual areas in the posterior cortex encode visual fea-

tures, with increasing complexity betweenprimary and secondary

areas, and are proposed to serve distinct functions in visual pro-

cessing (Andermann et al., 2011; Glickfeld and Olsen, 2017;

Marshel etal., 2011;Siegleet al., 2021).ThePPChas roles inaccu-

mulating sensory evidence and history-dependent signals (Hanks

et al., 2015; Hattori et al., 2019; Hwang et al., 2017; Morcos and
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Harvey, 2016; Pinto et al., 2019), transforming sensory stimuli

into motor outputs (Goard et al., 2016; Harvey et al., 2012; Licata

et al., 2017; Pho et al., 2018; Raposo et al., 2014), and monitoring

navigation route progression (Nitz, 2006), often in egocentric coor-

dinates (Nitz, 2012;Wilber et al., 2014). In the RSC, information for

navigation and spatial memory is prevalent, including that for

heading direction (Cho and Sharp, 2001; Jacob et al., 2017), land-

mark cues (Fischer et al., 2020), and goal locations (Miller et al.,

2019; Vale et al., 2020), and is often represented as conjunctions

of variables in an allocentric reference frame (Alexander and

Nitz, 2017).

Recent studies have observed that the encoding of actions

and spatial position is distributed widely across the posterior

cortex and, relatedly, that individual areas encode many vari-

ables (Allen et al., 2017, 2019; Kauvar et al., 2020; Minderer

et al., 2019; Musall et al., 2019; Steinmetz et al., 2019; Stringer

et al., 2019). Furthermore, even sensory areas such as the V1

exhibit conjunctive, multi-modal tuning (Keller et al., 2012;

Saleem et al., 2018; Shuler and Bear, 2006). It is unclear how

to reconcile this highly distributed encoding in the posterior cor-

tex with evidence for specialized functions in distinct areas. One

possibility is that studies proposing specialized functions typi-

cally examined only one or two cortical areas with different

experimental designs and thus underemphasized the common-

alities in encoding across areas. Another possibility is that some

variables are encoded in a distributed manner and others more

modularly. In particular, distributed encoding of bodily move-

ments observed during spontaneous or simple behaviors might
August 3, 2022 ª 2022 The Author(s). Published by Elsevier Inc. 1
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contrast with modular encoding of cognitive variables in more

complex tasks.

Functional organization is determined not only by the ‘‘distribut-

edness’’ of encoding for individual variables but also the pattern of

variable combinations in single neurons and the resulting popula-

tion geometry of encoding for multiple variables. For instance,

given distributed encoding of two variables, one areamay encode

eachvariable in separate neuronsand relay themtodistinct down-

stream targets,whereas another areamay combine the two in sin-

gle neurons togenerate newquantities useful for specialized com-

putations. Areas may build increasingly complex multi-modal,

high-dimensional population codes along a functional hierarchy

(Bernardi et al., 2020; Rigotti et al., 2013; Siegle et al., 2021). Alter-

natively, even if areas specialize in which variables they encode,

variablesmaybecombined in similarwaysacross areas, suggest-

ing general rules of integration that underlie shared computational

goals. Thus, a quantitativeanalysis of functional organizationmust

lookbeyond the ‘‘distributedness’’ of encoding for single variables

to consider the ‘‘conjunctive structure,’’ namely, theway variables

are integrated by single neurons and the resulting geometry of

population representations.

Here, we determine how the various processes underlying

flexible, navigation-based decision-making are functionally

organized, using a single experimental and analysis framework

for quantitative comparison of the encoding of �90,000 neurons

across the posterior cortex.We find that encoding of all variables

is more distributed than modular, despite significant differences

in encoding strength across areas for visual, locomotor, position,

and choice variables. Surprisingly, each area does not create

unique conjunctions of variables, aswould be expected for areas

performing distinct computations. Instead, all areas combine

variables similarly, resulting in a high-dimensional representation

of variable conjunctions that is shared across areas. We propose

that posterior cortical areas integrate qualitatively distinct input

modalities to form a general-purpose state representation of

the environment and behavior, which is used by downstream cir-

cuits to guide flexible navigation decisions.
Figure 1. Diverse decision-making strategies during flexible navigatio

(A) Rewarded cue-choice associations for rules A and B.

(B) Maze configuration and structure of trial epochs. At the trial end, after a delay, m

trial interval (ITI).

(C) Task performance for an example session. Green ticks, correct trials; red tic

dashed line, rule switches.

(D) Switch-aligned performance. n = 513 switches from 8 mice.

(E) Association matrix used to quantify strategy variables. Each entry represents t

conditioned on its trial history.

(F) Schematic of LSTM for deriving the association matrix on each trial.

(G) Modeled fraction correct and strategy variables for an example session. Orang

(H) Association matrices for the 5 example trials in (G).

(I) Switch-aligned modeled fraction correct and strategy variables. n = 265 switc

(J) Bilateral inhibition sites in VGAT-ChR2 mice.

(K) Task performance of an example session during photoinhibition.

(L) Effects of photoinhibition on task performance. Gray lines, individual mice; bla

0.0002; S1 versus RSC or PPC: p < 10�4; RSC versus PPC: p = 0.058. n = 164 s

(M) Effects of photoinhibition on strategy variables, measured as differences from

for S1, p = 0.018 for RSC, p < 10�4 for PPC; for rule-following, p < 10�4 for all target

0.2; 3 mice for RSC and one mouse for PPC).

Data and statistics in (D), (I), (L), and (M) are presented as hierarchical bootstrap

See also Figure S1.
RESULTS

Mice learned flexible cue-choice associations in a
virtual reality decision-making task
Wedesigned a behavioral task to study how sensation, planning,

movement, and recent experience are integrated during naviga-

tion decisions. Mice were trained to navigate a virtual reality

Y-maze using visual cues (black orwhitewalls) tomakedecisions

to run toward rewarded locations (left or right arms), based on

learned and changing rules (Figures 1A, 1B, and S1A). We

switched the rule determining the rewarded cue-choice associa-

tions every 100–175 trials in a session, without explicitly signaling

the rule or rule switch. To maximize reward, the mouse had to

combine the visual cue with an estimate of the current rule to

generate a choice and update its rule estimate following reward.

After training, mice learned both rules and adapted to rule

switches over tens of trials multiple times within a single session

(Figure 1C). Their behavioral performance was high before rule

switches and typically dropped below chance after switches

before gradually recovering to high accuracy by the end of a

block, without signs of anticipating rule switches (Figures 1D

and S1B–S1F). This task encouraged behavioral variability

driven by trial-and-error, even in expert mice, particularly

following rule switches, as we characterize below.

Decision-making strategy varied between rule-guided,
biased, and random modes
The performance of the mouse varied greatly within a session,

including high performance before rule switches and many er-

rors immediately after rule switches. A mouse’s choice might

reflect a variety of time-varying strategies, such as following a

specific cue-choicemapping based on a rule, repeatedly making

the same choice regardless of the cue identity, or making

random choices. We modeled the decision-making strategy on

each trial by estimating the conditional probability that the

mousewould select a choice given a specific cue and its trial his-

tory, using a long short-term memory (LSTM) recurrent neural
n decisions and photoinhibition in the posterior cortex

ice received visual feedback about the correctness before a reward and inter-

ks, incorrect trials; black line, smoothed performance (boxcar of 9 trials); gray

he probability of choosing left or right given a black or white cue for a given trial,

e shading, 90%CI from 1,000 simulations of task performance from themodel.

hes.

ck line, all mice. Control versus RSC or PPC: p < 10�4; control versus S1: p =

essions from 7 mice.

control. Open circles, average for individual mice. For bias-following, p = 0.025

s. Filled circles indicate micewith large increases in bias-following (greater than

mean ± SEM.
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network (Figures 1E and 1F). The LSTM accurately predicted a

mouse’s choices in held-out sessions (80.2% ± 5.1%, mean ±

SD) and served as a simple descriptive model, in contrast to

more interpretable but less accurate reinforcement learning

models (Figures S1G and S1H).

We extracted a set of strategy variables using the model to

describe a wide range of behaviors exhibited during flexible de-

cision-making (STAR Methods—decision-making strategy vari-

ables). From model predictions, we computed ‘‘rule belief’’ as

the probability that the cues informed choices consistent with

one rule versus the other and ‘‘choice bias’’ as the tendency to

choose left versus right, independent of the cue. In individual

sessions, we observed periods of strong rule belief (Figures 1G

and 1H, example trials 164, 206), choice bias (trials 114, 117),

and unpredictable choices or ‘‘random guessing’’ (trial 267).

We also compared model predictions to the mouse’s actual

choice to determine the degree to which individual decisions

were influenced by choice bias (bias-following) or rule belief

(rule-following). These metrics were positive when actual

choices followed a bias (example trial 114) or rule belief (trial

164), negative when choices were opposite to a bias (trial 117)

or rule belief (trial 206), and near zero for random guessing.

On average, prior to a rule switch, mice performed with little

choice bias and followed the correct rule (Figures 1I andS1I). After

a rule switch, the randomness of choices increased rapidly, as

seen by near chance levels of themodel’s probability of the actual

choice, and bias-following increased moderately. Then, rule-

following recovered gradually for the new rule belief. Although

behavior on individual ruleblocksandsessionswashighly variable

around these average trends (Figure S1J), our strategy variables

quantified these variations at a single-trial level. This task and

behavioral modeling thus dissociated both cue and choice from

the diverse decision-making strategies on a trial-by-trial basis.

Photoinhibition of posterior cortical areas impaired
rule-following
Previous studies have indicated that various areas of posterior

cortex are necessary for navigation and decision-making,

including the RSC and PPC (Harvey et al., 2012; Licata et al.,

2017; Pinto et al., 2019). We tested the necessity of these areas

using transcranial optogenetic excitation of GABAergic interneu-

rons, leading to inhibition of nearby excitatory cells (Figure 1J;

Guo et al., 2014; Li et al., 2019). Inhibition was performed

throughout maze traversal on randomized trials after mice

reached high performance between rule switches (Figure 1K). In-

hibiting either the RSC or PPC led to markedly lower task perfor-

mance compared with control trials or trials in which part of the

primary somatosensory cortex (S1) was inhibited (Figure 1L).

We analyzed the behavioral changes underlying impaired task

performance by including the inhibition sites as an input to our

LSTM model of decision-making strategy. PPC and RSC inhibi-

tion decreased rule-following compared with control trials and

S1 inhibition (Figures 1M, S1K, and S1L). Inhibition also caused

large increases in bias-following in a subset of mice (Figure 1M,

filled green dots), but this was inconsistent across mice and

uncorrelated with effects on rule-following (Figure S1M). Our

results are consistent with and extend previous work using tasks

with static rules in which inhibition of the PPC did not disrupt
4 Neuron 110, 1–19, August 3, 2022
basic sensory or motor function but prevented abstract sensory

cues from appropriately guiding actions (Harvey et al., 2012),

which in our study was quantified as rule-following.

Running trajectories reflected the within-trial dynamics
of choice formation
Mice used the presented cue and their rule belief to report their

choice at the end of the maze. However, the choice might

develop at any point in the trial and with different time courses

from trial to trial, potentially depending on the mouse’s deci-

sion-making strategy. We reasoned that choice formation might

be reflected in the running of the mouse during navigation. For

example, early in a trial, mice might exhibit movements in prep-

aration to report their choice when confident (Figure 2B; right

panel, trials 1 and 2) but may delay such movements (trial 3) or

alternate between options (trial 4) when uncertain. Indeed,

mice exhibited diverse running trajectories in the maze stem

that were typically predictive of the choice reported at the end

of the trial, even though the virtual heading and lateral position

in the maze were fixed by task design until the end of the maze

stem (Figures 2A and 2B, left panel; Figure S2A). This variability

in running trajectories increased following a rule switch, suggest-

ing that running variability reflected differences in underlying de-

cision-making strategies (Figures 2C and S2B).

To estimate choice formation from running, we quantified how

well the running trajectory ina single trial predicted themouse’s re-

ported choice on that trial with an LSTM (Figure 2D). At each time-

point, themodel usedall previous timepoints to estimate the prob-

ability that the mouse eventually chose left or right. This estimate

evolved with varying time courses and settled on correct predic-

tions at different maze positions in different trials, recapitulating

the variability seen in running trajectories (Figure 2E). We termed

thisquantity ‘‘dynamicchoice,’’ todistinguish it fromthebinary, re-

ported choice, and interpret it as a real-time estimate of the

mouse’schoice formation. Interestingly,wealsoobserved running

trajectories that reflected the identity of the cue early in a trial,

whichwe refer to as ‘‘cue-biased running’’; however, this behavior

was variable acrossmice and sessions andwas uncorrelatedwith

task performance and the time course of dynamic choice

(Figures S2C–S2K).

We validated our interpretation of dynamic choice by demon-

strating that it varied in an expectedmannerwith differences in de-

cision-making strategy. In particular, when amouse is confident in

its choice, due tohigh rule- or bias-following, itwill select its choice

more rapidly than trialswith randomorunpredictablechoices (rule-

or bias-following%0). As expected, the latency to dynamic choice

crossing a threshold was shorter on trials with higher rule- or bias-

following (Figure 2F). We then analyzed how strategy shaped the

within-trial time course of dynamic choice by calculating how

accurately dynamic choice at each timepoint predicted the actual

reported choice (‘‘choice commitment’’). On trials with high rule-

following, choice commitment started near chance but increased

rapidly during maze traversal (Figure 2G, left panel). In contrast,

when rule-following was low, choice commitment was low until

late in the trial, consistent with indecisiveness or changes of

mind when mice were uncertain of the rule. Furthermore, when

mice followed a bias, choice commitment was high at trial onset,

reflecting a choice formed early and irrespective of the cue
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Figure 2. Choice formation estimated from running trajectories

(A) Example normalized treadmill velocities and position in the maze.

(B) Roll velocity aligned to maze position. Left: example single trials from one session. Right: four example left trials compared than average left and right trials;

mean ± SD. n = 183 left trials and 229 right trials.

(C) Correlation of running trajectories for choice-matched trials, measured as difference from session average, aligned to the switch (left; n = 265 switches) or

averaged for 20 trials before versus after switches (right; gray lines, individual mice).

(D) Schematic of LSTM for decoding reported choice from running trajectories. The output is dynamic choice (Pleft).

(E) Dynamic choice for same data shown in (B).

(F) Left: latency to dynamic choice crossing a threshold (dashed line) for example trials. Right: relationship between latency (normalized by session-averaged trial

duration, 8.95 ± 2.04 s, mean ± SD) and strategy variables. n = 85,463 trials.

(G) Time course of choice commitment (LSTM decoding performance for reported choice, calculated as log likelihood with log base 2), binned by values of rule-

following (left) and bias-following (right). n = 68,249 trials.

Data and statistics in (C), (F), and (G) are presented as hierarchical bootstrap mean ± SEM.

See also Figure S2.
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(Figure2G, right panel).Bias-followingand rule-following thusboth

affected choice commitment with distinct and sensible dynamics

(Figure S2L), and consistent effects were observed in photoinhibi-

tionexperiments (FigureS2M).Our findings support the interpreta-

tion that running trajectories reveal nuances of decision-making

beyond the reported choice.

Calcium imaging of neural activity across the posterior
cortex
The task and behavioral modeling allowed for the study of neural

representations of visual, motor, and a variety of cognitive vari-

ables, including choice and decision-making strategy. To deter-
mine the functional organization of the posterior cortex, we

aimed to quantify the spatial distribution of the encoding for

these variables and their conjunctive structure. We used two-

photon calcium imaging to measure the activity of hundreds of

neurons simultaneously in a local region as mice performed the

task, and tiled imaging windows across the posterior cortex

over multiple sessions (Figures 3A and 3B). Within each mouse,

we sampled neurons across the V1, areas adjacent and medial

to V1 (anteromedial, or AM, and posteromedial, or PM), areas

between the V1 and S1 (anterior, or A, and a small portion of ros-

trolateral, or RL), the RSC, and an area adjacent and lateral to the

RSC (mediomedial, or MM) (G�am�anut‚ et al., 2018; Paxinos and
Neuron 110, 1–19, August 3, 2022 5
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Franklin, 2013). Using surface vasculature patterns and retino-

topic mapping, we registered all fields-of-view into the Allen

Institute Mouse Common Coordinate Framework (CCF) and as-

signed coordinates to 93,881 layer 2/3 neurons imaged from 141

sessions of 8 mice (Figures 3C, 3D, and S3A–S3C). This registra-

tion permitted analysis of neural activity as a function of cortical

location, without assuming pre-defined area boundaries.

Single neurons had diverse responses across trial types, and

many were seemingly selective for specific maze positions or

time points within a trial (‘‘trial phase’’) (Figures 3E–3G). To sys-

tematically quantify and distinguish the contributions of many vi-

sual, cognitive, and motor components, we built a generalized

linear model (GLM) to fit and predict the activity of single neurons

(Figure 3H). Predictors of neural activity included task variables

such as cue, strategy variables and dynamic choice, as well as

variables of instantaneous movement, measured as rotational

velocities and accelerations of the treadmill around three axes.

The GLM explained a substantial amount of moment-to-

moment variability in a neuron’s activity (fraction of Poisson devi-

ance explained: 0.25± 0.17,mean±SD; Figures 3I andS3D–S3F),

and for subsequent analyses, we focused on well-fit neurons,

although results were robust to this criterion (Figures S8K–S8O).

To build an encoding profile for each neuron, we quantified the

fraction of explained deviance accounted for by each individual

variable by measuring the decrease in cross-validated prediction

performance after zeroing the variable’s coefficients or by refitting

the GLM after excluding a given variable (Figures 3J, S3G,

and S3H).

Distinct encoding gradients for task variables and
instantaneous movement
To examine the distribution of encoding, we constructed encod-

ing maps by plotting each neuron’s fraction of explained devi-
Figure 3. Calcium imaging in the posterior cortex and encoding of ins

(A) Example mean GCaMP6s image (top) and overlying vasculature pattern near

(B) Overview image of the vasculature pattern within the cranial window. Yellow b

FOV; light yellow boxes, other FOVs.

(C) Top: registered field signmap overlaid with the vasculature pattern in (B). White

location. Bottom: mean field sign map of 8 mice. Green lines: anterior medial bord

landmarks in subsequent figures.

(D) Parcellation of all recorded neurons into 6 discrete areas, overlaid with area b

(E–G) Deconvolved activity of three example RSC neurons. Top: heatmap of sing

SEM. The x axis is in spatial units during maze traversal and in time units during

(H) Schematic of the GLM.

(I) Example traces of deconvolved activity and GLM prediction on held-out data

(J) Encoding profiles (fraction explained deviance for individual variables) of the

(K) Left: encoding magnitude of instantaneous movement for single neurons (indiv

filter, SD = 150 mm). n = 42,998 well-fit neurons from 8 mice.

(L) Smoothed encoding map for task variables.

(M) Average encoding magnitude of instantaneous movement and task variables

contained in the symbols.) Area A had higher encoding for movement and lower e

encoding for task variables than every other area (p < 10�3).

(N) Smoothed map showing difference between encoding magnitude of task var

(O) Left: encoding magnitudes of cue for individual neurons during stem traversa

(P) Time course of cue encoding for 6 areas for sessions with cue offset at 0.76

(Q) Decoding performance for cue from population activity, quantified as log likelih

of �100 nearby neurons, plotted at the mean location of all member neurons. n

(R) Encoding map of strategy variables, including individual strategy variables an

See also Figures S3 and S4.
ance for selected variables at the neuron’s cortical location

and smoothed these maps to show trends over space. We

observed that the encoding of both task variables and instanta-

neous movement was present throughout all areas (Figures 3K

and 3L). However, the encoding of task variables exhibited an

anterior-posterior gradient with highest strength in the V1, inter-

mediate in the RSC, and lowest in area A, whereas movement

encoding strength exhibited a gradient in the opposite direction

(Figures 3M, 3N, and S4A–S4I). The posterior cortex therefore

had widespread encoding of both task variables and instanta-

neous movement, consistent with previous literature (Musall

et al., 2019; Stringer et al., 2019) but with distinct quantitative

gradients.

Encoding of the visual cue identity was strongest in the V1 and

neighboring areas AM and PM, weaker in the RSC, and weakest

in area A (Figures 3O, S4J, and S4K), which was corroborated

with decoding of cue identity from the activity of �100 simulta-

neously recorded neurons (Figure 3Q). Cue encoding increased

rapidly after cue onset and decreased after the cue disappeared,

without major differences in the average time course between

areas (Figure 3P). Variables related to the decision-making strat-

egy, including their interactions with other task variables, collec-

tively exhibited a moderate encoding strength distributed evenly

across the posterior cortex (Figures 3R and S4L–S4O). Strategy

variables reflect a complex function of trial history, but we also

examined direct representations of the previous trial’s cue,

choice, and outcome (Akrami et al., 2018; Hattori et al., 2019;

Hwang et al., 2019; Koay et al., 2022; Morcos and Harvey,

2016). The previous trial’s outcome was much more strongly en-

coded than the previous trial’s cue or choice, whichmay relate to

the task demands imposed by rule-switching, and its encoding

was evenly distributed over space (Figures S4P–S4S). In sum-

mary, whereas cue encoding showed a gradient with enrichment
tantaneous movement and task variables

the brain surface (bottom) for an example field of view (FOV).

ox, location of the FOV in (A); pink dots, locations of neurons recorded in that

lines, area contours from Allen Institute Mouse CCF; red circle, cranial window

er of V1, lateral border of RSC, and posterior border of S1; used as anatomical

orders from CCF. n = 93,881 neurons from 141 sessions from 8 mice.

le-trial activity sorted by trial types. Bottom: trial-type average activity; mean ±

feedback period/ITI.

for the three neurons shown in (E)–(G).

three neurons in (E)–(G).

idual dots) at their cortical locations. Right: smoothed encoding map (Gaussian

for 6 areas. Hierarchical bootstrap mean ± SEM. (Error bars for movement are

ncoding for task variables than every other area (p < 10�3), while V1 had higher

iables and movement.

l at their cortical locations. Right: smoothed encoding map.

of maze length. Hierarchical bootstrap mean ± SEM.

ood with log base 2. Each point represents one population decoder consisting

= 974 decoders.

d their interactions with task variables.
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in visual areas, decision-making strategy had modulatory and

widespread effects on activity in the posterior cortex.

Encoding of dynamic choice was enriched in the RSC
and distinct from instantaneous movement
We next examined where and how choice was encoded across

the posterior cortex. We considered that, as mice traversed the

maze, neural activity may be more related to dynamic choice

than the eventual reported choice because dynamic choice ap-

proximates the actual time course of the mouse’s choice forma-

tion within a trial. Indeed, during traversal of the maze stem, en-

coding of dynamic choice was distributed across all areas but

enriched in the RSC and adjacent medial areas, accounting for

a substantial amount of neural activity compared with near-

zero encoding of reported choice (Figures 4A, 4B, S5A, S5D,

and S5E). In contrast, during the feedback period and inter-trial

interval (ITI), we observed greater encoding of reported choice

than dynamic choice (Figures 4C and S5B–S5E). This is sensible

because choice encoding during the feedback epoch is a mem-

ory of a recent decision rather than an evolving variable linked to

ongoing movements. The magnitude and spatial distribution of

choice encoding was similar between the maze stem and feed-

back epochs, with a medial-to-lateral gradient distinct from cue

and movement.

Our finding of near-zero encoding of reported choice during

stem traversal suggests the posterior cortex contained little in-

formation about upcoming choice beyond that embodied in

behavior. We more closely examined this by training neural de-

coders to predict the mouse’s reported choice based on pop-

ulation activity (Figure S5F) and examined whether reported

choice decoding contained information that was not accounted

for by dynamic choice. We calculated the partial correlation be-

tween the reported choice decoder’s output and either the re-

ported choice it was designed to predict or the dynamic

choice, conditioned on the value of the other. Partial correla-

tions were greater for dynamic choice than reported choice,

revealing that even decoders trained to predict reported choice

were more closely related to dynamic choice (Figures 4D and

S5G). Thus choice-related activity in the posterior cortex

closely reflected the embodied process summarized by dy-

namic choice.

Our finding of distinct encoding gradients for instantaneous

movement and dynamic choice may seem surprising given

that dynamic choice was derived from running trajectories. To

clarify the distinction, we generated model-free tuning curves

for single neurons identified by the GLM as selective to left-right

running (roll velocity) or dynamic choice (Figures 4E and S5H).

The activity of roll velocity-selective neurons (neurons 1 and 2)

closely tracked instantaneousmovement, importantly both dur-

ing maze traversal and the feedback period/ITI, and their activ-

ity was thus somewhat correlated with dynamic choice. Dy-

namic choice-selective neurons had weak and inconsistent

activity correlations with roll velocity and were instead most

active at specific positions in the maze, with strong choice

(neuron 3) and often cue (neurons 4 and 5) selectivity. Further-

more, dynamic choice encoding, and its enrichment in the

RSC, was not explained by more complex or temporally inte-

grated movement encoding (Figures S5I–S5N).
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Because choice in this task corresponded to a navigation goal

in the maze, we also considered whether the RSC and medial

areas encoded other navigation-related signals. Encoding of

maze position was present in all areas, but strongest in the

RSC, with a similar medial-to-lateral gradient as choice encoding

(Figures 4F and 4G). The RSC was also most active in the maze

stem and least active during feedback and ITI periods, when

area A was more active (Figures 4H and S5O). Together, these

differences justify a distinction between the anterior-posterior

movement encoding gradient and a medial-lateral choice and

position encoding gradient.

Encoding of most variables is highly distributed
Our results show that specializations in encoding coincide with

widely distributed representations, and we sought to quantify

where each variable’s encoding lies on the spectrum of distribut-

edness. We first quantified the mutual information between en-

coding strength and area identity, with higher values indicating

encoding that is more modular, i.e., specialized to specific loca-

tions in the posterior cortex (Figures 5A and S6A). We then

compared these values with two intuitive models that we used

to generate synthetic encoding strength distributions spanning

the entire spectrum from ‘‘fully distributed’’ to ‘‘fully modular’’

(STAR Methods—quantification of distributedness). One model

mixed encoding strengths frommodular and distributed distribu-

tions according to a ‘‘random fraction’’ (Figure 5B), while the

other added Gaussian ‘‘jitter’’ to a modular encoding strength

distribution (Figures 5C and 5D). By varying eachmodel’s under-

lying parameter to produce encoding strength distributions with

equivalent mutual information to the empirical data (Figures S6B

and S6C), we obtained ‘‘equivalent’’ random fraction and jitter

parameters, which summarize the distributedness of encoding

for a single variable along an intuitive quantitative spectrum.

Cue and movement were the two variables with the highest

mutual information between encoding strength and posterior

cortical area. However, their equivalent random fractions were

greater than 0.75, implying that the representations were closer

to ‘‘fully distributed’’ (random fraction = 1) than ‘‘fully modular’’

(random fraction = 0) (Figure 5E). Similarly, their equivalent jitters

were near 0.6, which is large relative to the normalized encoding

strength range of 0–1 (Figure 5F). The encoding of maze position

and choice was even more distributed than cue and movement,

with equivalent random fractions near 0.9. All other variables

were also highly distributed, with decision-making strategy be-

ing the most distributed (random fraction near one). These re-

sults are consistent with studies showing distributed movement

encoding across the mouse cortex, as all variables were closer

to a fully distributed than modular organization. Interestingly,

however, many cognitive variables are even more widely distrib-

uted than movement encoding, at least for the posterior cortex.

Single-neuron encoding profiles confirm functional
gradients and distributed representations
We have so far analyzed the distributedness of encoding only

for single variables, but it is possible that a more modular pic-

ture of cortical organization emerges if we consider multiple

variables at once. We designed analyses to identify the pat-

terns of encoding that best distinguish between cortical areas
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Figure 4. Encoding of choice and maze position

(A) Encoding magnitude (left), smoothed map of dynamic choice (middle), and smoothed map of reported choice (right) during stem traversal.

(B) Average encoding magnitude of dynamic choice and reported choice during stem traversal for 6 areas. All 6 areas: dynamic choice versus reported choice,

p < 10�3. Dynamic choice: RSC versus V1, PM, or A, p < 10�3; RSC versus AM or MM, p > 0.05. Reported choice: each area versus zero, p > 0.05.

(C) Same as (B) but in feedback period/ITI. All 6 areas: reported choice versus dynamic choice, p < 10�3. Reported choice: RSC versus each other area, p < 0.05.

(D) Partial correlation (Spearman) of decoded reported choice (decR) with dynamic choice (D), conditioned on reported choice (R) (bootstrap mean ± SEM, 0.35 ±

0.02) versus partial correlation of decRwith R, conditioned on D (bootstrapmean ± SEM, 0.14 ± 0.02) during stem traversal. Each point represents one population

decoder consisting of �100 nearby neurons. Mean difference between the two partial correlations is greater than 0 (bootstrap mean difference ± SEM, 0.21 ±

0.02, p < 10�3). n = 974 decoders.

(E) Tuning curves for roll velocity (top, plotted during maze traversal and feedback period/ITI) and dynamic choice (bottom, plotted at each neuron’s preferred

maze position) for two roll velocity-selective neurons (neurons 1 and 2) and three dynamic choice-selective neurons (neurons 3–5). The GLM-derived encoding

magnitude (fraction explained deviance) for that variable is indicated on each panel.

(F) Smoothed encoding map of maze position during stem traversal.

(G) Average encoding magnitude for maze position during stem traversal for 6 areas. RSC versus V1, PM, or A, p < 10�3; RSC versus AM or MM, p > 0.05.

(H) Smoothed maps of average Z scored deconvolved activity during the maze stem (left) and feedback period/ITI (right).

(I) Schematic of area parcellation.

Data and statistics in (B), (C), and (G) are presented as hierarchical bootstrap mean ± SEM.

See also Figure S5.
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when considering multiple variables and to visualize the dis-

tributedness of these patterns across the posterior cortex.

We first identified location-informative encoding by training
decoders to predict the probability that each neuron was

located at each site in a grid across the cortex based on the

neuron’s encoding strengths for multiple variables, which we
Neuron 110, 1–19, August 3, 2022 9
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Figure 5. Distributedness of encoding across the posterior cortical areas

(A) Distribution of encoding strength rank of single neurons in 6 areas for various variables. MI, normalized mutual information between encoding strength and

area identity; RF, equivalent random fraction; jitter, equivalent jitter; see (B) and (C).

(B) Schematic of intuitive models generated by mixing fully modular and fully distributed configurations with random fraction = 0.7.

(C) Schematic of intuitive models generated by perturbing the encoding strength rank of the fully modular configurations by adding Gaussian noise (parametrized

by jitter, or Gaussian noise SD) to the rank.

(D) Distribution of encoding strength rank for intuitive models in (C) generated with different jitter values.

(E and F) Equivalent random fraction and jitter for various variables. Bootstrap mean ± SEM.

See also Figure S6.
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termed a neuron’s ‘‘encoding profile’’ (Figures 6A, S6E, and

S6F). Neurons in the V1, A, and RSC were typically predicted

to reside in their actual areas of origin, indicating that these

neurons had distinctive encoding profiles, in contrast to neu-

rons from AM and MM that were predicted to reside in all sites

across the posterior cortex (Figure 6B).

To identify the most significant spatial differences in encoding

profiles across the posterior cortex, we applied low-rank factor-

ization to the predictions of these decoders—the probability that

a neuron resided at each anatomical site based on its encoding

profile (Figure 6C; STAR Methods—nonnegative matrix factor-

ization of decoded locations). Three nonnegative factors domi-

nated the factorization (Figure S6I), each representing an encod-

ing profile most typical of a set of distinct locations. Strikingly,

these factors formed three distinct spatial gradients that domi-

nated the anatomical organization of encoding with peaks in

the V1, RSC, and A, respectively (Figure 6D). Although each fac-

tor’s encoding profile had contributions from diverse task and

behavior variables, cue was greatest in factor 1, maze position

and choice were greatest in factor 2, and movement was great-

est in factor 3 (Figure S6G).
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Although factorization revealed encoding profiles enriched in

distinct areas, the actual locations of neurons exhibiting these

encoding profiles were distributed throughout all areas (Fig-

ure S6H). To visualize the heterogeneity of encoding, we devel-

oped a linear embedding of each neuron’s encoding profile

based on dimensionality reduction of the learned location

decoder coefficients across all cortical locations (Figures 6F

and S6J; STAR Methods—linear embedding of single-neuron

encoding properties). This embedding positioned neurons

nearby that, based on encoding profiles, were predicted to be

in similar anatomical locations. The embeddingmapped neurons

onto a triangular manifold, corresponding closely to the repre-

sentative encoding profiles of the three factors (Figures 6G and

S6K). Neurons from individual cortical areas formed continuous,

overlapping distributions in embedded space (Figures 6H and

S6L). Although the centroids of the distributions (i.e., most

typical encoding profiles) were offset from one another, many

neurons were functionally closer to the centroid of a different

area than to the centroid of the area where they resided. Our an-

alyses showed how specialization and distributed representa-

tion coexist in the posterior cortex: while the V1, RSC, and
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Figure 6. Distinct spatial gradients of encoding in the posterior cortex

(A) Examples of decoding cortical locations from GLM-derived encoding profiles of single neurons.

(B) For all neurons in one of the 6 areas, the average decoded probability distribution of a neuron’s location over the posterior cortex. Chance level is 0.0041 (1/

number of location decoders; black arrow on the color bar).

(C) Schematic of the nonnegative matrix factorization (NMF) of the decoded locations of all neurons.

(D) NMF decoder scores plotted spatially for each nonnegative factor.

(E) Schematic of area parcellation.

(F) Schematic of embedding of single-neuron encoding profiles.

(G) All neurons embedded in the encoding space, colored with the NMF neuron scores for each factor.

(H) Top: dendrogram showing hierarchical clustering of 6 areas by their centroid locations. Bottom: summary of distribution of neurons in 6 areas in the encoding

space. Colored lines, contours at 25% of the peak density; plus signs, centroid locations.

See also Figure S6.
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A each contained neurons whose encoding profiles were mostly

unique to each area, corresponding to the peaks of three spatial

gradients, the majority of neurons in all areas had encoding pro-

files that could occur in any area.

Conjunctive structure of encoding in single neurons is
similar across the posterior cortex
The analyses of the encoding profiles of neurons revealed how

different variables’ encoding strengths varied across cortical

space,but theydonot specify thehigher-orderprinciplesbywhich
variables are combined in single neurons, i.e., the conjunctive

structure.Conjunctive structuremay indicate computational func-

tions that differ across posterior cortical space beyond that re-

vealed inencodingstrengthsalone.Forexample, anareawhich in-

tegrates current movement with previous position to estimate

present position should exhibit single neurons whose activity is

modulated by both movement and position. In contrast, another

area could encode these same variables with similar encoding

strength but with different variables preferentially encoded by

separate neurons and relayed to distinct downstream targets.
Neuron 110, 1–19, August 3, 2022 11
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Figure 7. Quantification of encoding correlations showed generic integration

(A) Joint and marginal distributions for encoding strength rank of cue and dynamic choice during stem traversal in 6 areas.

(B) Same as (A), but for cue and movement.

(C) Same as (A), but for dynamic choice and movement.

(D) Pearson correlation between the encoding strength of cue and dynamic choice during stem traversal for neurons in 6 areas. Bootstrap mean ± SEM. Cor-

relations in all areas were not significantly different from one another (p > 0.05).

(E) Same as (D), but for cue and movement. A versus each other area, p < 0.013, whereas correlations in other 5 areas were not significantly different from each

other (p > 0.05).

(F) Same as (D), but for dynamic choice and movement. Correlations in all areas were not significantly different from one another (p > 0.05).

(G) Decoding performance for one-versus-others decoders that distinguished neurons in each of the 6 areas from neurons in all other areas, based on encoding

correlations only, encoding strengths only, and both, during stem traversal. Mean ± SEM with leave-one-mouse-out procedure. All decoding was above chance

(p < 0.05), except encoding correlations only for AM and MM. Encoding strengths only versus encoding correlations only: p < 0.05 in all areas except for AM.

Encoding strengths only versus strengths + correlations: p > 0.03 for all areas, not significant after multiple comparison correction. Wilcoxon signed-rank test.

(H) Decoding performance for pairwise decoders that distinguished neurons in a pair of areas during stem traversal.

See also Figure S7.
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We therefore consider conjunctive structure a key component of

cortical organization and examined whether such structures are

similar or different across posterior cortical areas, which we refer

to, respectively, as ‘‘generic’’ or ‘‘specialized’’ integration.
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We first examined conjunctive coding in single neurons by

visualizing joint histograms of the encoding strength rank for

pairs of cue, choice, and movement variables (Figures 7A–7C

and S7A–S7C). We observed a wide distribution in how much
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(legend on next page)
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individual cells encoded both variables, including cells that

showed prominent conjunctive coding. Differences between

joint histograms for each area were apparent but mostly re-

flected the different marginal distributions of encoding strength

in each area. To isolate conjunctive structure, we measured

the correlation in encoding strength for both variables in single

neurons within each area. A positive correlation indicates the

variables are more conjunctively encoded in single neurons

than chance, a correlation near zero reveals that the encoding

strength for one variable in a neuron is uninformative of encoding

for other variables, and a negative correlation means the vari-

ables tend to be encoded in distinct neurons. Strikingly, the cor-

relations in encoding between pairs of variables were similar

across areas, despite major differences in the encoding

strengths of these variables between areas (Figures 7D–7F and

S7D–S7H). In addition, the correlation coefficients were close

to zero, indicating near-random mixing of the variables within

each area, which includes some neurons that conjunctively

encode both variables.

We then more thoroughly searched for differences in conjunc-

tive structure by decoding the area a neuron resided in, based on

either the encoding strengths of variables or the encoding corre-

lations between pairs of variables. The ability to decode a neu-

ron’s location was dominated by the encoding strengths of indi-

vidual variables rather than the encoding correlations between

variables (Figures 7G, 7H, S7H, and S7I). Although decoding

based on encoding correlations allowed above-chance perfor-

mance, it was poor relative to decoding from encoding strengths

alone. Further, decoding with both encoding correlations and

encoding strengths was barely improved from decoding with en-

coding strengths alone. Therefore, differences in conjunctive

structure between areas were not substantial, and the posterior

cortex exhibited generic integration across areas, rather than

specialized integration in different areas.

Flexible, high-dimensional representations in the
posterior cortex
Having observed generic integration in the conjunctive structure

of single-neuron encoding strengths, we next considered

whether similar results would hold at the population level of

representational geometry. Nonlinear mixing of variables in sin-

gle neurons can create high-dimensional population representa-

tions, which provide downstream areas with flexibility and spec-

ificity in responding to task conditions (Fusi et al., 2016; Rigotti
Figure 8. High-dimensional representation of conjunctive variables ac

(A) Fraction explained deviance of cue for the top 25% cue-selective neurons ac

(B) Same as (A), except the top 25% of dynamic choice-selective neurons.

(C) Left: average decoding performance for cue, based on populations of �100 n

change in decoding performance as a function of the distance between maze pos

positions where cue was present). n = 698 decoders.

(D) Same as (C), but for decoding performance of dynamic choice, quantified as t

(E) Schematic for identifying marginally balanced dichotomies over conjunctive c

(F) Spatial maps of shattering dimensionality (average decoding accuracy over al

population of 1,000 nearby neurons centered on that cortical location.

(G) Shattering dimensionality based on populations of 1,000 neurons subsampled

different from one another (p > 0.01, not significant after multiple comparison co

Data and statistics in (C), (D), and (G) are presented as hierarchical bootstrap me

See also Figure S8.

14 Neuron 110, 1–19, August 3, 2022
et al., 2013). As one example, we observed cue- and choice-se-

lective sequences of activity during navigation (Harvey et al.,

2012; Koay et al., 2022; Figures 8A and 8B). These represent a

mixing of tuning for position and cue or choice in individual neu-

rons leading to a high-dimensional representation, as decoders

trained to predict cue or choice at one maze position degraded

in accuracy when tested at other maze positions (Figures 8C

and 8D). The high-dimensional representation for cue and choice

with position would allow linear downstream readouts to trigger

relevant actions at specific maze positions, dependent on a

given cue or choice.

We compared the dimensionality of population representations

across the posterior cortex by adapting recent techniques to

measure ‘‘shattering dimensionality’’ for a range of conjunctions

of variables, including cue, choice, position, movement, and

rule belief (Bernardi et al., 2020). Shattering dimensionality refers

to the fraction of arbitrary groupings (‘‘dichotomies’’) of task con-

ditions that a linear decoder of population activity can discrimi-

nate between, which approaches one as the dimensionality of

neural encoding approaches the dimensionality of task condi-

tions. We generated conjunctive task conditions for a combina-

tion of variables by dividing each variable into discrete bins and

averaged neural activity for each combination of bins across trials

for pseudo-populations across the posterior cortex. Dichotomies

of conjunctive conditions with unbalanced marginal distributions

were discarded, so that shattering dimensionality was quantified

as decoding accuracy on only ‘‘marginally balanced’’ dichot-

omies, to strictly measure the nonlinear conjunctive coding rather

than individual variable encoding strengths (Figure 8E; STAR

Methods—quantification of shattering dimensionality for conjunc-

tive variables).

Shattering dimensionality for all conjunctions in all areas was

well above chance and, interestingly, shattering dimensionality

for each conjunction was similar across the posterior cortex

(Figures 8F, 8G, and S8A–S8C). Almost all differences between

areas were not statistically significant and fell within a range of

<10% classification accuracy for each conjunction (Figure 8G).

Also, pseudo-populations including neurons from all areas ex-

hibited nearly identical shattering dimensionality as when

including only individual areas. Thus, for a range of conjunctions

of variables, similar high-dimensional codes were present across

the posterior cortex, consistent with the generic integration

scheme and in contrast to significant differences in the encoding

strength of individual variables. For example, cue and maze
ross the posterior cortex

ross all cells, separated in 6 areas and sorted by peak location.

earby neurons for 6 areas, quantified as log likelihood with log base 2. Right:

itions of the data that the decoders were trained on and tested on (restricted to

he Spearman correlation between decoded and real values. n = 974 decoders.

onditions formed by a pair of variables.

l marginally balanced dichotomies) during stem traversal. Each dot indicates a

from all neurons and each of the 6 areas. All datapoints were not significantly

rrection).

an ± SEM.
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position conjunctionsweredecodedwell bypopulations in the V1,

RSC, andA, despite cue andmaze position encoding being stron-

gest in the V1 and RSC, respectively, and weak in A. Our results

suggest thatpreviouslydescribedneural sequencesareexamples

of amore general function of the posterior cortex, whichmay inte-

grate diverse variables into a distributed, high-dimensional repre-

sentation of task and behavioral state, while individual areas are

specialized to handle inputs of different modalities.

DISCUSSION

We observed that posterior cortical areas differed in the quan-

titative degree to which they encoded variables, not which var-

iables they encoded and, surprisingly, not the way variables

are combined in single neurons or the resulting population ge-

ometry of conjunctive representation. This organization is

poorly fit to the common notion of a ‘‘functional hierarchy.’’

Association areas (e.g., A, RSC) did not exhibit more complex

representations than sensory areas (e.g., V1), and encoding of

all variables was highly distributed, particularly for more ab-

stract quantities such as decision-making strategy variables.

These results also argue against a ‘‘specialized integration’’

principle in which areas generate distinct combinations of vari-

ables to subserve distinct computations. Instead, during flex-

ible navigation decisions, our results point to a parallel organi-

zation of the posterior cortex based on generic integration.

Although posterior cortical areas have differential enrichment

in the modalities of information they process, all areas share

a high-dimensional code for relevant task and behavioral vari-

ables. We caution that our analyses do not capture the con-

junctions of behavior or task variables that were not measured

in our task or modeled by the GLMs, and thus it is possible

that posterior cortical specialization could be greater for

different variables and tasks. However, in contrast to prevalent

theories that conceive of cortical areas performing modular

and hierarchically organized computations, the functional or-

ganization we observed suggests new hypotheses for the

role of the posterior cortex in navigation decisions.

In the task studied here, determining the next action to take at

any moment depends on a combination of many variables,

including visual cues, current position, goal location, internal

rule estimate, and ongoing movement. We have shown that

many parts of the posterior cortex represent this high-dimen-

sional state of variable conjunctions, which provides linear

downstream readouts great flexibility and specificity in selecting

appropriate actions, such as ‘‘run left at the Y-intersection when

seeing the black cue during rule A.’’ It is possible that identifying

relevant combinations of variables and generating a correspond-

ing representation of the behavioral and environmental state is a

primary function of the posterior cortex in guiding navigation de-

cisions. In this case, areas may be specialized to integrate

different signal modalities into a distributed, general high-dimen-

sional state representation, which is then available to a range of

circuits downstream of the posterior cortex. This hypothesis has

similarities to theories that the cortex performs unsupervised

learning on its inputs (Doya, 1999) and the machine learning

concept of representation learning (Xie et al., 2020). In addition,

results from the inactivation of the PPC and RSC in this and pre-
vious studies are consistent with the notion that downstream

areas use the posterior cortex’s state representation to guide

navigation decisions, instead of the PPC andRSC having a direct

role in sensory perception or motor control, as inhibiting these

areas eliminates associations between cue and choice without

disrupting the mouse’s ability to locomote or to perceive and

respond to visual stimuli (Arlt et al., 2021; Harvey et al., 2012;

Pinto et al., 2019). Furthermore, across studies, the PPC and

RSC have been shown to be necessary for a variety of decision

tasks that lack common computational requirements (Akrami

et al., 2018; Arlt et al., 2021; Hwang et al., 2017; Lyamzin and Be-

nucci, 2019), consistent with these areas participating in a gen-

eral-purpose state representation. It is likely that this state repre-

sentation coexists with localized and specialized computations

that differ across the posterior cortex. However, it is interesting

to speculate that diverse cognitive functions proposed for the

posterior cortex across tasks, such as evidence accumulation

or maintaining trial history of task variables, might be task-spe-

cific computations that contribute to the synthesis of a task-

appropriate state representation.

The functional specializations we observed as encoding gra-

dients, along with the great extent of conjunctive coding, is

consistent with much prior work that investigated one or two

areas at a time. The enrichment of visual signals in the V1 and

PM is consistent with studies mapping visual representations

in the posterior cortex, and the presence of spatial andmotor in-

formation in these areas is in agreement with recent results

showing a surprising degree of non-visual signals in the V1 (Fiser

et al., 2016; Keller et al., 2012; Parker et al., 2020; Saleem et al.,

2018; Shuler and Bear, 2006; Stringer et al., 2019; Zmarz and

Keller, 2016). The enrichment of choice and position information

in the RSC is consistent with its well-characterized role in navi-

gation, and the conjunctions of sensory, movement, position,

and choice variables are in line with previous work (Alexander

and Nitz, 2015; Bicanski and Burgess, 2016; Cho and Sharp,

2001; Fischer et al., 2020; Hinman et al., 2018; Keshavarzi

et al., 2022; Mao et al., 2020). Our work highlights an important

role of the RSC in encoding dynamic choice, which is closely

related to representation of navigation goals (Miller et al.,

2019; Vale et al., 2020). The enrichment of encoding of naviga-

tion-relevant movement in area A relates to its identified roles in

representing postures and self-motion in rodents (Mimica et al.,

2018; Whitlock et al., 2012) and results in primates that suggest

the PPC contributes to movement intention and planning (An-

dersen and Cui, 2009; Desmurget et al., 2009; Hanks et al.,

2006; Roitman and Shadlen, 2002; Thier and Andersen, 1998).

However, this result is perhaps surprising given that area A is

sometimes considered to be a secondary visual area (Wang

and Burkhalter, 2007; Wang et al., 2020). Our findings are also

consistent with our previous study identifying distributed en-

coding of tens of task and behavior-related features in the pos-

terior cortex during a visually guided locomotion task (Minderer

et al., 2019). As the number of distinct spatial gradients was not

explicitly quantified in that study, hereweshowed that variability

in tuning across cortical space was mostly captured by three

functional modes (Figure 6D; see also STARMethods—analysis

of dimensionality of encoding across neurons versus encoding

across cortical space).
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One critical feature of our approach was utilizing a model to

extract a continuously evolving estimate of the animal’s deci-

sion from its running trajectory (dynamic choice). This was

possible because navigation decisions were executed by

continuous movement over many seconds, during which

choice could evolve and influence the ongoing navigation tra-

jectory of the mouse. Notably, similar embodiment of cognitive

processes has been observed across diverse species and lab-

oratory tasks (Kaufman et al., 2015; Lakshminarasimhan et al.,

2020; Pinto et al., 2018; Redish, 2016; Resulaj et al., 2009;

Song and Nakayama, 2009). Previous work has suggested

that heading angle during navigation may predict neural activ-

ity better than (reported) choice (Krumin et al., 2018), and that

it may reflect an accumulation of evidence (Pinto et al., 2018).

Since heading angle was constant throughout maze traversals

in our task by design, we believe these findings can be ex-

plained alternatively by neural representations for a continu-

ously evolving choice signal that is tightly coupled to behav-

ioral output. We note this relationship is sensitive to the

incentives created by task design, as some studies have

observed neural encoding of upcoming choice without sub-

stantial accompanying behavioral embodiment (Harvey et al.,

2012). However, more generally, we anticipate that modeling

behavioral outputs to infer cognitive processes will prove fruit-

ful, especially in tasks with increasing complexity and uncon-

strained behaviors (Brunton et al., 2013; Havenith et al.,

2018, 2019; Lakshminarasimhan et al., 2018; Rosenberg

et al., 2021; Roy et al., 2021).

Our work uncovers an organizing principle for the posterior

cortex and proposes a functional role for it in flexible, goal-

directed navigation. A major direction for future work will be to

understand what aspects of the representations studied here

arise within the posterior cortex or are inherited from other

regions. This important direction regarding the functional orga-

nization of representation versus computation can potentially

be addressed with functional imaging at synaptic and dendritic

levels, simultaneous recording of multiple brain areas, labeling

neurons based on projection targets, and monitoring changes

in neural activity during the targeted perturbation of neural

populations.
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training, and 3-6 months old during imaging. For optogenetic inhibition experiments, seven male VGAT-ChR2-YFP mice from Jack-

son Laboratory (stock no. 014548) were used. These mice were 10 weeks to 1 year old during the photoinhibition experiments. All

mice were kept on a reversed 12-hour dark/light cycle and housed in groups of 2-3 littermates per cage.

METHOD DETAILS

Behavioral task and training
Virtual reality system

For calcium imaging experiments, we used a virtual reality system that has been previously described (Harvey et al., 2009; Morcos

and Harvey, 2016) for behavioral and imaging experiments. Mazes were constructed using ViRMEn (Virtual Reality Mouse Engine;

Aronov and Tank, 2014) inMatlab. Imageswere back-projected onto a half-cylindrical screen (24-inch diameter) using a PicoPro Pro-

jector (Celluon) at 60 Hz frame rate. For optogenetics experiments, a compact virtual reality system was used (https://github.com/

HarveyLab/mouseVR). The compact system was assembled with laser-cut acrylic pieces and mirrors, with overall dimensions of 15

inches wide 3 21 inches deep 3 18 inches high. Images were projected onto a double-mirror system and a half-cylindrical screen

(15-inch diameter) using a Laser Beam Pro projector. In both systems, head-restrained mice ran on an air-supported styrofoam

spherical treadmill (8-inch diameter), and the ball movement was recorded using a pair of optical sensors (ADNS-9800, Avago Tech-

nologies) and converted into 3-dimensional rotation velocity signals with amicrocontroller (Teensy 3.2, PJRC). The pitch velocity was

used to translate forward/backward position throughout themaze, and the roll velocity controlled the lateral position. View angle was

fixed along the forward direction.

Task description

The task took place in a virtual Y-maze (Figures 1B and S1A). For behavioral and imaging experiments, the full length of themaze was

250 cm with 200 cm for the stem and 50 cm for the arms. During behavioral training, the stem had a width of 60 cm, and the visual

scene varied as the mouse made lateral movements in the stem. To control the visual stimulus during imaging experiments, stem

width was reduced to 10 cm, starting a few sessions before imaging began, which prevented any lateral movement in the maze

stem because the virtual agent could not approach closer than 5 cm to any wall. Therefore, during imaging experiments, the visual

scene in the Y-stemwas controlled entirely by themouse’s position along the long axis of the Y-stem, with no lateral movement along

the short axis and no angular rotation (view angle changes). While running down the stem of the Y-maze, mice were randomly pre-

sented with one of the two distinct cue patterns on the wall (black background with white dots or white background with black dots)

andmade lateral movement into one of the two arms after passing the Y-intersection. In themajority of sessions, the cue disappeared

either 10 cm or 60 cm before the Y-intersection and was replaced by a gray wall pattern (‘‘cue delay’’ sessions; fixed delay length per

session). On other sessions, the cuewas visible in the Y-intersection until themice entered amaze arm (‘‘no cue delay’’ sessions). We

noticed that the task performance decayed as the mouse experienced multiple sessions with long cue delay. Thus, to keep the task

performance stable over sessions, the presence and the length of the cue delay was manually adjusted based on the mouse’s per-

formance in previous sessions. After themice entered an arm, their lateral position was adjusted and locked to a central position such

that every trial exhibited an identical view of a gray wall on all sides. After a one-second delay, a visual feedback (checkerboard

pattern) replaced the gray wall for 2 seconds if the mouse made a correct choice, after which reward (3 ml 10x diluted condensed

milk, Eagle Brand) was delivered through a lick sprout as the screen turned dark for 3 seconds before the onset of the next trial.

On incorrect trials, the wall stayed gray during the feedback period for 2 seconds, followed by a 5 second timeout with dark screen.

Some representative maze views are shown in Figure S1A. The associations between visual cues and rewarded arms were deter-

mined by one of the two rules (rule A: black cue-left arm/white cue-right arm; rule B: black cue-right arm/white cue-left arm;

Figure 1A). The rule alternated in blocks with pre-determined length of 100-175 trials, without explicit signaling for the rule switches.

Therefore, to maximize the reward, the mouse had to combine the visual cue with an estimate of the current rule (rule belief) to

generate a choice, and update its rule belief by combining a memory of a trial’s cue and choice with the outcome. A typical session

consisted of 350-450 trials with 2-3 switches. The mice consumed all rewards throughout the sessions with their licking behavior

monitored with a lick sensor.

For photoinhibition experiments, amodified configuration of the virtual mazewas used. The full length of themaze was 180 cmwith

100 cm for the stem and 80 cm for the arms. The two cue patterns were vertical and horizontal bars, and these patterns extended into

the walls in the maze arms.

For all experiments, we interleaved a small fraction (typically varying from 0 to 20%) of visually guided trials to assist behavioral

performance. In these trials, the checkerboard pattern was present on the end wall of the rewarded arm and was visible to the

mice before entering an arm. The inclusion of visually guided trials helped the mouse stay engaged and retain stable performance,

and wemanually determined the fraction based on themouse’s task performance on previous sessions. These trials never appeared

as the first trial after rule switches. We found that these visually guided trials did not have a larger impact than other trials on the up-

date of the mouse’s rule belief (see the section modeling of decision-making strategies), and we excluded them from all analyses

unless mentioned otherwise.

Training procedure

Three to five days prior to behavioral training, mice were put on a water restriction schedule that limited their water consumption to

1 mL per day. Their body weight was monitored daily and kept above 80% of the pre-training weight with additional water supply
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when necessary. At the first stage of training, mice were head-restrained on top of the spherical treadmill and placed into a virtual

linear track, in which the reward was available at the end of the track. Mice were randomly presented with one of the two cue patterns

on the side walls on each trial, and the checkerboard pattern was always present on the wall at the end of the track prior to the reward

delivery (to encourage association of reward with the checkerboard pattern). We gradually increased the length of the linear track

from 15 cm to 300 cm as mice learned to run straight forward on the treadmill. This stage took 7-10 days, with one session per

day. After the mice demonstrated proficient running skills, we moved them to the Y-maze. Visual cues were present throughout

the maze (‘‘no cue delay’’). Both rules were introduced in alternating blocks within every session with at least 2 switches (3 blocks).

At the early phase of this stage, all trials were visually guided, and the mice learned to follow the checkerboard pattern and move the

ball laterally to enter the rewarded arms. As training progressed, we gradually decreased the fraction of visually guided trials, so the

mice learned the rewarded cue-choice association imposed by both rules. At the late stage of training, we added a cue delay before

the Y-intersection. Mice were considered well-trained when accuracy reached 70-75% with a low fraction of visually guided trials (0

to 20%). This training process took around 1-2 months and varied between individual mice.

Surgery
Cranial window

Prior to behavioral training, a cranial window implant surgery was performed. Mice were injected with dexamethasone (2 mg per g

body weight) 4-12 hours before the surgery. For the surgery, mice were anesthetized with 1-2% isoflurane. A skin incision was

created to expose the skull, and a titanium headplate was affixed to the skull with dental cement (Metabond, Parkell) mixed with India

ink for light-proofing. A 3.5 mm-diameter craniotomy was created over the left hemisphere, centered at 2 mm lateral, 2.5 or 2.75 mm

posterior to bregma, and the dura was removed. A glass plug constructed with two 3.5 mm-diameter inner coverslips and one

4.0 mm-diameter outer coverslip (#1 thickness, Warner Instruments) bonded together using optical adhesive (Norland Optics

NOA 65) was inserted and sealed with dental cement. Mice were then put on behavioral training. After they learned to reliably perform

the task, they were anesthetized again for injection of adeno-associated virus (AAV) after one day of free access to water. The dental

cement around the window and the glass plug were removed, and 60-100 nL of AAV2/1-synapsin-GCaMP6s-WPRE-SV40 (U. Penn

Vector Core, cat. no. AV-1-PV2824) diluted in phosphate-buffered saline (1/10 dilution with final titer �4 3 1012 gc/ml) was injected

into layer 2/3 and layer 5 (250 mmand 500 mmbelow the pia surface, respectively). Injections were targeted to 7-9 sites spaced evenly

across areas of interest, including primary visual cortex (V1), posteromedial (PM), anteromedial (AM), mediomedial (MM), retrosple-

nial cortex (RSC), and anterior (A). Gradual and continuous injections were made using a glass pipette and a custom air-pressure

system over 2-3 min per depth per site, and the pipette was left in place for an additional 3-5 min. A new glass plug was then inserted

and sealed with dental cement.

Before the headplate implantation, mice were also injected with two retrogradely transported AAVs (AAV2retro-Syn-mTagBFP2

undiluted with concentration �1.5 3 1013 gc/ml and AAV2retro-Syn-mScarlet 1/5 dilution in PBS with final concentration

�5 3 1011 gc/ml, both obtained from Boston Children’s Hospital Viral Core) in projection target areas of posterior cortex. Mice

were injected with AAVretro-mTagBFP2 and mScarlet into one of the two sets of targets through craniotomies on the left hemi-

sphere: (1) anterior ACC/M2 (3 sites: 1 mm anterior, 0.5 mm lateral, 0.3 and 1.0 mm in depth; 1 mm anterior, 0.8 mm lateral,

0.4 mm in depth; 300 nl AAVretro-mTagBFP2 per site) and dorsomedial striatum (3 sites: 1 mm anterior, 1.2 mm lateral,

2.1 mm in depth; 1 mm anterior, 1.5 mm lateral, 2.1 mm in depth; 0.2 mm posterior, 1.75 mm lateral, 2.1 mm in depth; 300 nl

AAVretro-mScarlet per site), or (2) posterior ACC/M2 (4 sites: 0 mm anterior, 0.35 mm lateral, 0.4 and 0.8 mm in depth; 0 mm

anterior, 0.7 mm lateral, 0.3 mm and 0.8 mm in depth; 300 nl AAVretro-mTagBFP2 per site) and orbital frontal areas (ORBvl:

2.45 mm anterior, 0.75 mm lateral, 1.8 mm in depth; ORBl: 2.45 mm anterior, 1.25 mm lateral, 1.8 mm in depth; 500 nl

AAVretro-mScarlet per site). Craniotomies were sealed with dental cement before implantation of headplate. Note that the labeling

resulting from AAVretro injections was not analyzed for this study.

In four of the mice used for imaging, only the headplate was implanted before behavioral training. AAVretro injections, cranial win-

dow creation and GCaMP injections were made at once after the mice achieved proficient performance for the task.

Clear skull cap

The surgical procedures for optogenetics experiments were described previously (Guo et al., 2014; Minderer et al., 2019). Mice were

anesthetized with 1-2% isoflurane. The scalp was resected to expose the dorsal skull surface, and the periosteum was removed. A

thin layer of cyanoacrylate glue (Insta-Cure, Bob Smith Industries) followed by several layers of transparent dental acrylic (Jet Repair

Acrylic, Lang Dental, P/N 1223-clear) was applied to the skull to create the cap. A bar-shaped titanium headplate was affixed to the

interparietal bone using dental cement for use during training. Prior to beginning photoinhibition, mice were anesthetized again, and

the skull cap was polished with a polishing drill (Model 6100, Vogue Professional) using denture polishing bits (HP0412, AZDENT). A

layer of clear nail polish (Electron Microscopy Sciences, 72180) was applied to the polished skull cap. An aluminum ring was then

attached to the skull using dental cement mixed with India ink for light-proofing.

Photoinhibition experiments
We built the photostimulation system based on a previous design (Minderer et al., 2019). Light from a 470 nm collimated laser (LRD-

0470-PFFD-00200, Laserglow Technologies) was coupled with a pair of galvanometric scanmirrors (6210H, Cambridge Technology)

and focused onto the skull using an achromatic doublet lens (f = 300mm, AC508-300-A-ML, Thorlabs). The analog powermodulation
e3 Neuron 110, 1–19.e1–e16, August 3, 2022
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along with the mirrors allowed rapid movement of the laser beam between multiple target sites for simultaneous stimulation. The

focused laser beam had a diameter of approximately 200 mm.

Data from six out of seven mice for the photoinhibition experiments were included and analyzed differently as part of an indepen-

dent study (Arlt et al., 2021). We started the photoinhibition after mice reached steady state performance within a rule block. Three

cortical targets were selected: PPC (1 spot: 2 mm posterior, 1.75 mm lateral), RSC (3 spots: 1.5, 2.5, 3.5 mm posterior, 0.5 mm

lateral), and S1 (1 spot: 0.5 mm posterior, 2.5 mm lateral) together with an out-of-cortex control site on the dental cement (1 spot:

2mmanterior, 5mm lateral) (Figure 1J). For the single spot targets (PPC, S1 and control), the laser power was sinusoidally modulated

at 40 Hz and the time-average power was approximately 6.5 mW per spot. For RSC (3 spots), we used laser power modulated at

20 Hzwith amean of 5mWper spot. The inhibition was performed bilaterally, with an estimated effect size of 1-2mm radius on cortex

(Guo et al., 2014; Pinto et al., 2019). Given this spatial resolution, the inhibition at the PPC coordinate would have effect on adjacent

areas including A, AM, MM, and small portions of PM, lateral part of RSC and anterior part of V1 (the distance between PPC and

anterior border of V1 is �0.8 mm). The inhibition of RSC would have effect on MM and small portions of AM, PM and A. The majority

of V1 would be less affected since its center is greater than 2 mm away from PPC and RSC coordinates.

In each session, inhibition blocks consisting of 50 trials started when the mouse’s performance reached 85% correct over the past

30 trials, followed by a rule switch right after the end of each inhibition block. The targets of the inhibition trials were randomly inter-

leaved, with at least half of the trials targeting the control site. Within the trial, the inhibition started 0.5 s prior to the trial onset and

lasted until the mouse reached the maze end. Overall, we collected data from 164 sessions from 7 mice. Each session consisted of

10.7 ± 4.3 trials per target and 34.0 ± 15.5 control trials (mean ± SD).

Two-photon calcium imaging
Microscope design

Imaging data were collected using a custom-built two-photon microscope. The scan path used a resonant-galvanometric mirror

pair separated by a scan lens-based relay telescope to achieve fast scanning. The objective lens (Nikon 16 3 0.8 NA water

immersion objective) was mounted on a piezo collar (nPFocus250 Piezo stage with LC 400 controller, nPoint) for slower axial

scanning. An aluminum box housed the collection optics to prevent light contamination from the virtual reality display. Emitted

fluorescence light was separated by a dichroic mirror (562 nm long-pass, Semrock) and bandpass filters (525/50 and 625/

90 nm, Semrock) into green and red light before collected by GaAsP photomultiplier tubes (Hamamatsu). A Ti:sapphire laser

(Coherent Chameleon Vision II) delivered excitation light at 920 nm. The microscope was operated with ScanImage (version

2016a, Vidrio Technologies). The spherical treadmill was mounted on an XYZ translation stage (Dover Motion) which positioned

the mouse underneath the stationary objective.

Image acquisition

Volumetric images were acquired at 30 Hz in four axial planes covering a field-of-view of 512 3 512 pixels (675 mm 3 750 mm), with

planes spaced 20-30 mm apart. Acquisition was discarded during the fly-back period of the axial scanning. Therefore, the resultant

frame rate for each plane was 6 Hz. The depth of the top plane was set at 100-130 mm below the pia surface for layer 2/3 imaging or

320-375 mm for layer 5 imaging. The analog signals of the ScanImage frame clock, together with the ball velocity signals and iteration

signals from ViRMEn, were recorded at 2 kHz in WaveSurfer (version 0.9192, https://wavesurfer.janelia.org/releases/index.html). A

reference image of the top plane was acquired at the beginning of the imaging andwas used to correct translational shifts of the field-

of-view at the middle of the sessions. At the end of each session, the overall shifts were measured, and used to estimate the XYZ-

velocities added to stagemovement that compensated the brain motion for the next session. In addition, an image of the vasculature

pattern near the pia surface of the field-of-view was acquired, which was used for registration of the field-of-view into a window-

centered coordinate frame.

Pre-processing of imaging data
Motion correction

Custom code was used to motion correct calcium imaging data: https://github.com/HarveyLab/Acquisition2P_class/tree/

motionCorrection. Motion correction was implemented as a sum of shifts on three distinct temporal scales: sub-frame, full-frame,

and minutes- to hour-long warping. First, sequential batches of 1000 frames were corrected for rigid translation using an efficient

subpixel two-dimensional FFT method (Guizar-Sicairos et al., 2008). Then rigidly-corrected imaging frames were corrected for

non-rigid image deformation on sub-frame timescales using a Lucas-Kanade method (Greenberg and Kerr, 2009). To correct for

non-rigid deformation on long (minutes to hours) timescales, a reference image was computed as the average of each

1000-frame batch after correction, and one such average was selected as a global reference for the alignment of all other batches.

This alignment was fit using a rigid two-dimensional translation as above, followed by an affine transform after the rigid shift (imregt-

form in Matlab), followed by a nonlinear warping (imregdemons in Matlab). We found that estimating alignment in this iterative way

gave much more accurate and consistent results than attempting nonlinear alignment estimation in one step. Interpolating data mul-

tiple times can degrade quality, and so all image deformations (including sub- and full-frame shifts within batch) were converted to a

pixel-displacement format and summed together to create a single composite shift for each pixel for each imaging frame. Raw data

were then interpolated once using bi-cubic interpolation (interp2 in Matlab).
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Source extraction

We used CNMF to identify sources and temporal activity traces in calcium imaging data (Pnevmatikakis et al., 2016). Minor modifi-

cations to the initialization algorithm were implemented as described previously (Chettih and Harvey, 2019) and available at https://

github.com/Selmaan/NMF-Source-Extraction. Fluorescence traces of each source were then deconvolved using the constrained

AR-1 OASIS method (Friedrich et al., 2017); decay constants were initialized at 1 s and then optimized for each source separately.

DF/F traces were obtained by dividing CNMF traces by the average pixel intensity in the movie in the absence of neural activity (i.e.,

the sum of background components and the baseline fluorescence identified from deconvolution of a source’s CNMF trace). Decon-

volved activity was also rescaled by this factor in order to have units of DF/F.

Classification of the sources

To separate CNMF sources into categories for cell bodies and other non-cell body sources, we trained a 3-layer convolutional neural

network in Matlab to classify each source into one of the four classes: cell bodies, vertically oriented neural processes, horizontally

extended neural processes, and unclassified sources or imaging artifacts. The spatial footprint of each source was centered and

cropped into a 25 3 25 pixel image (�1.35 mm per pixel) as input to the network. The network was constructed with 3 convolutional

layers (53 5 filters, stride 1, number of filters: 32, 16, 16 for each layer) followed by a 256-unit fully connected layer and a 4-unit soft-

max output layer. The network was trained on 35,771manually classified sources with 12 folds augmentation with rotation, reflection,

translation and rescaling using stochastic gradient descent with momentum, with the following hyperparameters: batch size = 1024,

learning rate = 0.01, L2 regularization = 0.0001. Classification accuracy (agreement withmanual labels) for cell body class on held-out

data was above 90%, close to the variabilities of manual annotations.

The dataset consisted of 278,155 neurons collected in 300 sessions from 8 mice. Among those, only the neural data of 93,881

neurons from 141 sessions were recorded in layer 2/3 with task performance > 65% correct and are included in the subsequent an-

alyses, whereas all behavioral data were used in this study. Data from layer 5 neurons were not analyzed for this study.

Widefield retinotopic mapping
Retinotopic mapping was performed in mice used for calcium imaging with a tandem-lens epifluorescence macroscope (Driscoll

et al., 2017; Ratzlaff and Grinvald, 1991). Mice were anesthetized with 0.7-1.2% isoflurane. Excitation light (455 nm LED) was

band-pass filtered (469 nm with 35 nm bandwidth, Thorlabs) and reflected onto the cranial window through a camera lens

(NIKKOR AI-S FX 50 mm f/1.2, Nikon), focused at 400 mm below the brain surface. GCaMP6s emission was collected with the

same lens, filtered (525 nm with 39 nm bandwidth, Thorlabs), and imaged with a CMOS camera (ace acA1920-155um, Basler;

lens: SY85MAE-N 85 mm F1.4, Samyang) at 60 Hz. Visual stimuli were presented on a 27-inch IPS LCD monitor (MG279Q, Asus),

centered in front of the right eye at a 30-degree angle from the mouse’s midline. The stimulus was a spherically corrected periodic

black and white checkered moving bar (Marshel et al., 2011) with constant width (12.5 degrees), speed (10 deg/s) and alternating

frequency of the checker pattern (3 Hz), presented in seven blocks consisting of 10 repeats along each of the two directions of car-

dinal axes. Retinotopic maps were constructed by computing the temporal Fourier transform at each pixel to extract phase at the

stimulus frequency (Kalatsky and Stryker, 2003). The phase images were averaged across all trials for each direction. Field sign

was calculated by taking the sine of the angle between the gradients of the averaged azimuth and altitude retinotopic maps (Sereno

et al., 1994). An image of the vasculature pattern at the brain surface was taken under the same field-of-view, whichwas later used for

aligning field sign to two-photon images.

Registration to the Allen Institute Mouse Common Coordinate Framework (CCF)
The aim of the registration was to assign a location in the Allen CCF for every neuron recorded in different sessions from different

mice. The procedure was modified from our previous work (Minderer et al., 2019). For each mouse, we collected a high-resolution

reference image of the vasculature patterns at the brain surface of the cranial window using two-photon microscope, by stitching

together a tiled 43 4 grid of images acquired at typical field-of-view size (675 mm3 750 mm). The field sign was aligned to this refer-

ence image using a rigid transformation (translation, rotation, and scaling) identified with control point registration of the widefield

vasculature image to the two-photon reference image (cpselect in Matlab). The aligned field sign was then registered to the Allen

CCF by aligning the border between V1 and PM as well as the one between PM and AM to a CCF-aligned reference field sign

map (available from Allen Institute: http://portal.brain-map.org/; Figures 3C, S3A, and S3B), which gave us a window-to-CCF trans-

formation function. To register individual neurons to CCF, the location of each neuron (center of mass of the spatial footprint) in the

window-centered coordinate was first determined by aligning the vasculature pattern above each field-of-view to the two-photon

reference image (using the imregtform in Matlab with rigid transformation), and then transformed to CCF using the window-to-

CCF transformation function.

Area parcellation
In our imaging experiments, we tiled fields-of-view across posterior cortical space irrespective of area boundaries rather than target-

ing pre-specified cortical areas, because the definition of cortical areas in posterior cortex is ambiguous. For example, previous

studies of PPC have recorded neurons near a stereotaxic coordinate (Driscoll et al., 2017; Harvey et al., 2012; Morcos and Harvey,

2016), but its borders are unclear. However, in some analyses, neurons or neural population decoders were grouped into six distinct

areas: V1, PM, AM, MM, RSC, A (Figures 3D, 4I, 6E, and S3C). To discretize the cortical space into non-overlapping areas, we
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adopted a combinatorial approach using anatomical and functional landmarks. Neurons in RSC and V1 were separated according to

the medial border of RSC and contour of V1 provided by the Allen CCF v.3 (Wang et al., 2020), as these boundaries are generally

agreed upon. Although the CCF provides area parcellations for the space in between V1, RSC, and the posterior border of S1, other

researchers have suggested alternative and somewhat incompatible subdivisions of this region (G�am�anut‚ et al., 2018; Paxinos and

Franklin, 2013; Wang and Burkhalter, 2007; Zhuang et al., 2017). To promote identifiability and reproducibility of areas across exper-

imenters, we subdivided this region into 4 areas using the following criteria. First, secondary visual areas AM and PM were identified

by tracing their contours in average retinotopy field sign maps, which slightly deviates from CCF definitions of these areas, as is

apparent in the Allen Institute CCF-aligned field sign maps. We then defined area A to mostly overlap with the Allen CCF definition

for VisA, but excluding the region of retinotopic AM present in the CCF area VisA, and including a small fraction of neurons slightly

posterior-lateral to VisA in CCF area VisRL. Finally, neurons medial to AM, PM, and A, but lateral to RSC, were assigned to area MM.

MM is reliably identified in immunolabeling (Wang and Burkhalter, 2007) and cytoarchitecture (‘‘V2MM’’) (Paxinos and Franklin, 2013)

but is not present in the Allen CCF. Note that a typical imaging field-of-view centered on coordinates previous used in studies of PPC

(1.75 mm lateral, 2 mm posterior to bregma) (Harvey et al., 2012) would overlap with part of AM, MM and area A.

After parcellation, of the 93,881 neurons recorded from layer 2/3, we obtained 14,373 neurons in V1, 9,564 neurons in PM, 14,974

neurons in AM, 9,885 neurons in MM, 23,036 neurons in RSC, and 22,049 neurons in area A.

QUANTIFICATION AND STATISTICAL ANALYSIS

Software
All data frommethods above were entered into a MySQL database and analyzed using custom-built pipelines in Datajoint for Matlab

and Python (Yatsenko et al., 2015). Analyses were performed inMatlab and Pythonwith following libraries: NumPy (Harris et al., 2020;

Van DerWalt et al., 2011), SciPy (Virtanen et al., 2020), Matplotlib (Hunter, 2007), Scikit-learn (Pedregosa et al., 2011), and Tensorflow

(Abadi et al., 2016).

Statistical procedures
The values of sample size n andwhat they represent for each analysis can be found in the figure legends and related sections in STAR

Methods. Hierarchical bootstrapping was used to generate statistical estimates and significance throughout the analyses, unless

indicated otherwise. The number of levels depended on different types of analyses. For analyses of quantities at the level of sessions,

rule blocks, or switches, we generated resampled datasets by randomly sampling with replacement, first of the mice and then of the

sessions, blocks, or switches. For strategy value-binned trials, we resampled within individual strategy value bins, first of the mice,

then of the trials. For analyses of neurons or neural population decoders, resampled datasets were generated first of the mice and

then of the neurons or neural population decoders. The number of bootstrap samples was 10,000 for analyses of behavior-related

quantities and 1,000 for neural response-related quantities. The mean and standard error of the bootstrap samples were reported.

For significance testing for paired quantities, we built the empirical distribution of the difference between the paired quantities and

then computed the probability that the difference was greater or less than zero and took whichever was smaller. The two-tailed p

value was reported as twice this probability. For comparing two non-paired bootstrapped samples, we computed the probability

that one was greater or less than the other, used whichever was smaller, and multiplied it by two as the two-tailed p value. For

one-tailed tests, we reported the p value as the probability that one is greater or less than the other, dependent on the direction

of the null hypothesis. Most of the p values reported in this study are two-tailed, unless a one-tailed test is indicated. The Benja-

mini-Hochberg procedure was used when multiple statistical tests were conducted simultaneously, such as comparing a quantity

between multiple areas, to control the false discovery rate at 0.05 (Benjamini and Hochberg, 1995).

Task performance analysis
These analyses refer to Figures S1B–S1F. For each behavioral session, the fraction of correct trials for the whole session and indi-

vidual blocks were calculated. To further quantify the task performance across rule switches, a smoothed, time-varying function of

reward rate of each block was estimated from the time series of trial outcome (correct: 1, incorrect: 0) by fitting to a sigmoid function,

rðtÞ = L

1+ expð � ðt � t0Þ=k Þ+b

where rðtÞ is the reward rate of a given trial t. Parameters of the function were transformed before fitting to satisfy the following

constraints: t0, between 0 and the block length; L and b, between 0 to 1; and k, greater than 0. The fittingwas performed byminimizing

the cross-entropy loss of fitted and true values using the fminunc function in Matlab on the transformed parameter representations.

Visually guided trials were excluded from the fitting.

To determine the initial and end performance of each block, we evaluated the fitted values at the first and last trial of the block. The

recovery constant was identified as the trial number at which the fitted performance reached 63% increase of the difference between

initial and end performance from the initial value for each block (Figures S1E and S1F). Blocks with end performance < 70% correct

were viewed as unrecovered switches and excluded from the statistics for the recovery constant and subsequent switch-aligned
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metrics. Task performance for sessions with overall fraction correct > 0.5 was analyzed and shown in Figures 1D and S1B–S1F, but

only sessions with overall fraction correct > 0.65 were included for subsequent behavioral and neural analyses.

Modeling of decision-making strategies
LSTM model

These analyses refer to Figures 1E and 1F. An LSTM for strategy modeling was trained for each mouse to predict its choice for

each cue, at every trial in a session, based upon previous trials’ data (Figure 1F). The LSTM was constructed in Matlab with a

16-unit LSTM layer followed by a 2-unit sigmoid classification layer. Each input sequence consisted of the 4-channel time series

of the cue of the current trial, the cue, choice, and outcome of the previous trial for all trials in each session, and an additional

channel indicating the location of the visually guided checkerboard (1: left arm; -1: right arm; 0: not present). Note that visually

guided trials were included in the modeling processes to retain continuation of the time series of trials, but model predictions

and performance on these trials were excluded in all analyses. For photoinhibition experiments, we also included the presence

of inhibition on the current trial as input (one dummy variable for each inhibition target). The training and testing were done

with a leave-one-session-out procedure for all sessions recorded from individual mice. The network was trained on the complete

input sequences for all sessions for that mouse except for the held-out session using Adam optimizer, with the following hyper-

parameters: batch size = 1, learning rate = 0.1, L2 regularization = 0.0123. To make predictions for the held-out session, we

created two test sequences for every trial. For trial t, both sequences consisted of the real input sequence from the first trial to

trial t-1, but the cue on trial t was set to either 0 or 1 to obtain choice predictions of the model for both possible cues. We

thus predicted the probability of choosing left (PLeft) vs. the probability of choosing right (PRight), for both cues, for each trial given

its trial history, as conditional probabilities: P(L|B), P(R|B), P(L|W) and P(R|W) (Figure 1E). The hyperparameters of network size and

regularization strength were selected using a grid search with 60%/20%/20% division of each mouse’s data into training/valida-

tion/testing. Hyperparameters had small effects on prediction accuracy, and we selected the single set of hyperparameters with

highest accuracy averaged across all mice, corresponding to test accuracy of 80.15%.

Decision-making strategy variables

These analyses refer to Figures 1G–1I, S1I, and S1J. Decision-making strategy variables were derived from the LSTM’s predicted

conditional probabilities for each choice conditioned on each cue, using the full history of trials on that session. The probabilities

shown below are thus all conditioned on the trial history with values varying across trials, which we omit for notational compactness.

Our first set of strategy variables were direct transformations of these probabilities, to compute choice bias and rule belief. Choice

bias captured the tendency of a mouse to make a left choice versus right choice on a given trial, independent of the cue identity. We

computed the marginal probability for each choice and defined choice bias as the unsigned difference between marginal choice

probabilities:

PðLÞ =
½PðLjBÞ+PðLjWÞ�

2

PðRÞ =
½PðRjBÞ+PðRjWÞ�

2

Choice bias = jPðLÞ � PðRÞj
since both cues were equally likely. Alternatively, the signed version retained the directionality of the choice bias (positive for left

bias and negative for right bias), as shown in Figure 1G.

The tendency of a mouse to use the given cue to make a choice based on either rule was described as the rule belief, quantified by

comparing the average probability of the two cue-choice associations that matched each rule. It was defined as a signed value: pos-

itive for higher belief in rule B, negative for higher belief in rule A, or 0 for both random and fully biased choices.

Pðrule AÞ =
½PðLjBÞ+PðRjWÞ�

2

Pðrule BÞ =
½PðLjWÞ+PðRjBÞ�

2

Rule belief = Pðrule BÞ � Pðrule AÞ
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Our second set of strategy variables compared our model predictions for a trial with themouse’s actual choice. We considered the

conditional probability of the mouse’s actual choice on each trial given that trial’s actual cue, and linearly subdivided this into con-

tributions from the marginal probability of the choice and the additional contribution of the cue:

Probability of actual choice = Pðactual choicejactual cueÞ
Bias-following = Pðactual choiceÞ � 0:5
Rule-following = Pðactual choicejactual cueÞ � Pðactual choiceÞ
The -0.5 in bias-following centered its value at 0 when the marginal probability of the choice was 0.5, meaning that the mouse was

equally likely to choose left versus right.

When the probability of actual choice was near 0.5, the mouse’s behavior was unbiased and unrelated to cues, and both bias-

following and rule-following metrics were typically near 0, indicating ‘‘random guessing’’ (see Figures 1G and 1H, example trial

267). However, when the probability of actual choice was high, this could be due to a high bias-following, meaning the mouse

made biased choices independent of the cue (example trial 114), or due to rule-following, meaning the mouse made cue-dependent

choices (example trial 164). Occasionally, when a mouse made an unlikely choice according to the model prediction (e.g. an ‘‘error’’

trial during a period of otherwise accurate rule-following behavior), the probability of actual choice can be below the chance level of

0.5. Because these choices were difficult to predict from previous trials, and this model inaccuracy appeared transiently, these

choices likely reflected variability in the mouse’s decision-making strategy rather than a failure of our model. On these trials, either

bias-following (example trial 117) or rule-following (example trial 206) could be negative, implying that the mouse’s behavior was

counter to the local expectation of either biased or rule-guided choices. These metrics were capable of describing the wide range

of behaviors exhibited during flexible decision-making. For example, positive/negative rule-following values are analogous to cor-

rect/incorrect trials during high-performance periods in tasks without rule switches.

To examine if visually guided trials and normal trials had distinct effects on updating the rule belief as modeled by the LSTMs, we

compared the average amount of rule update per trial (Drule belief, positive means increase of belief to current rule) between visually

guided trials and normal trials for 30 trials after rule switches. The rule update per trial was 0.013 ± 0.0055 for visually guided trials and

0.0080 ± 0.0023 for normal trials (difference = 0.0052 ± 0.0057, p = 0.34, hierarchical bootstrapmean ± SEM, n = 265 switches).When

we considered correct trials only, the rule update was 0.015 ± 0.0067 for visually guided trials and 0.017 ± 0.0093 for normal trials

(difference = -0.0017 ± 0.0078, p = 0.89). Thus, no significant difference in the effect on rule updates between the two types of trials

was observed in our modeling.

Reinforcement learning model

These analyses refer to Figures S1G–S1I. We built Q learning-based reinforcement learning models for decision-making strategy as

an alternative to LSTM-based modeling. The Q function described the state-action value for each cue-choice pair and was updated

using temporal difference learning rules after each trial:

For the trial type of the current trial (cue-choice pair):

Qðcue; choiceÞ)Qðcue; choiceÞ+a,½reward � Qðcue; choiceÞ �
For all other trial types:

Qðcue; choiceÞ) d,Qðcue; choiceÞ+ ð1 � dÞ,Q0ðcue; choiceÞ
a is the learning rate and d is the decay rate bounded between 0 to 1. We set the initial Q-value Q0 to 0.

The likelihood of making a left choice for the given cue at trial t is:

PLðtÞ =
1

1+ exp
�� bDQ,½b0 +QLðtÞ � QRðtÞ�

�
bDQ is the inverse temperature and b0 is the bias.

We further included a lapse term in order to compute the final likelihood, weighted by a factor l.

We implemented several variants of models with various components included: choice perseverance, rule-coupling, and reward-

dependent learning rates.

Choice perseverance can be modeled with additional parameters 4 and t, corresponding to the strength and timescale of choice

perseverance, with modified likelihood as (Katahira, 2018):

Pa = iðtÞ =
ebDQ,½QiðtÞ+4CiðtÞ�

eb0
P

k = L;R

ebDQ,½Qk ðtÞ+4Ck ðtÞ�
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Ciðt + 1Þ = ð1 � tÞCiðtÞ+ t,IðaðtÞ = iÞ
Ið ,Þ is the indicator function and a(t) indicates the choice (L or R) at trial t.

For models with rule-coupling, the Q value for the trial type of the same rule as the current trial type (e.g. the Q function for black-left

following a white-right trial) is jointly updated with a coupling factor r.

Qðcue; choiceÞ)Qðcue; choiceÞ+ r,a,½reward � Qðcue; choiceÞ�
For models with reward-dependent learning rates, we used separate learning rates areward and aunreward to update Q values for trials

with and without reward, respectively.

The parameters were tuned to minimize the negative log likelihood for all trials in all sessions for each mouse with the leave-

one-session-out procedure for making predictions on held-out sessions using the fminunc function in Matlab. For model com-

parison, we selected the best model using log likelihood on held-out data (Figure S1G) and confirmed the results with AIC

and BIC.

Running trajectory correlation analysis
These analyses refer to Figures 2C and S2B. Movement signals (pitch, roll, and yaw velocities of the spherical treadmill) for single

trials were first binned and averaged at a grid of maze positions. The running trajectory correlation between two trials was calculated

as the Pearson correlation of the vectors of each position-binned signal and then averaged across three velocity types. Within a ses-

sion, pairwise trajectory correlations between every given trial and all the other choice-matched trials were calculated and averaged.

This value was compared to a baseline trajectory correlation as the average correlation of all choice-matched pairs. The difference

(Dtrajectory correlation) was aligned to rule switches. To compare pre- and post-switch periods, we averaged Dtrajectory correla-

tions 20 trials prior to and after the first trial of a switch.

Modeling of dynamic choice and cue-biased running
These analyses refer to Figures 2D–2G and S2C–S2F. The LSTM neural network for dynamic choice and cue-biased runningwas con-

structed inMatlab with a 10-unit LSTM layer followed by a 2-unit sigmoid classification layer to predict themouse’s reported choice or

the cue identity at every timepoint within a trial, using the running trajectories from trial onset to that timepoint (Figure 2D). The input

sequence consisted of the time series of the 3-channel running velocity signals and the forward positions in the maze for every trial.

This sequence extended 5 seconds into feedback period/ITI, during which the time elapsed was linearly converted to a pseudo-po-

sition as an extended part of the virtual maze.We trained different models for individual behavioral sessions to account for variability in

running across sessions. The training and testing procedure were done with both model-averaging and cross-validation. Specifically,

we divided the data into 6 cross-validation folds and trained a different model for each group of 5 folds for prediction on the 6th, and

then re-divided data into new cross-validation folds and repeated this procedure 6 times. Thus, each trial’s final prediction was the

average prediction over 6 different cross-validated models. Training data were also sorted into batches by length and balanced by

trial type within batches, by re-sampling additional trials as needed, and trials with abnormal length (length > 2 times average length)

were excluded. The network was trained using Adam optimizer, with the following hyperparameters: batch size =100, learning rate =

0.1, L2 regularization = 0.1. The hyperparameters of the network architecture and training procedure were selected using a grid search

in a small number of pilot sessions. For the reported choice decoder, themodel output (Pleft) was named ‘‘dynamic choice’’, and for the

cue decoder, the output (Pblack) was termed ‘‘cue-biased running’’. The decoder performance, or the decodability of reported choice

or cue identity, was quantified as model log likelihood, equivalent to the negatively signed binary cross-entropy loss.

Log likelihood = y,log2ðbyÞ+ ð1 � yÞ,log2ð1 � byÞ
where y is the true binary value (reported choice or cue), and by is the prediction (dynamic choice or cue-biased running). Log base 2

was used so that the log likelihood equals -1 for chance-level predictions and 0 for perfect prediction.When log likelihoodwas smaller

than -1 (below chance model prediction), the dynamic choice or cue-biased running was more consistent with the opposite reported

choice or cue. For reported choice decoding, we specifically referred to this log likelihood as ‘‘choice commitment’’, measuring the

consistency between the decoded choice from movement (until that timepoint) and the eventual reported choice. The latency for

dynamic choice to cross a threshold was identified as the timepoint from trial onset at which dynamic choice reached 0.9 for left trials

and 0.1 for right trials, normalized by the average trial duration of individual sessions.

We interpreted the dynamic choice as an approximation of the time-varying process of choice formation reflected in running tra-

jectories, although such estimate should be regarded as a lower bound of the true choice formation process: when movements pre-

dict future choice one can conclude a decision ismade, but it is possible for decisions to bemadewithout becoming rapidly evident in

motor behavior.
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Logistic decoder for cue from movement
These analyses refer to Figures S2J and S2K. For a more easily interpretable analysis of cue-biased running, in addition to the LSTM

network we fitted a logistic regression model to decode the cue identity using the movement at the first 25% of the maze stem, since

the cue-biased running was most prominent early in the trial. Logistic decoders were trained on the average 3-channel running ve-

locities over this period using the fitglm function in Matlab with 10-fold cross validation. The accuracy (fraction correct) of the model

indicated the overall magnitude of cue-biased running, and the sign of the coefficient for roll velocity indicated the directionality of

how cue identity was correlated with left-right movements (Figure S2K). The model trained for one session was also applied to other

sessions from the same mouse, and the cross-session accuracy showed the consistency of this cue-lateral movement mapping

across multiple sessions (Figure S2J).

Analysis of photoinhibition experiments
These analyses refer to Figures 1L, 1M, S1K–S1M, and S2M. We assessed the impact of photoinhibition at each targeted area

on the task performance (fraction correct) and the behavioral model-derived quantities (strategy variables and choice commit-

ment) by comparing the values on target trials to the control trials within each session, using a modified hierarchical bootstrap

procedure. For each target area, we generated 10,000 bootstrap datasets by sampling with replacement the mean values of

interest on target trials and control trials for individual sessions, first of the mouse, then of the sessions. For each bootstrap data-

set, we then averaged session-level data within each resampled mouse before averaging across mice. This procedure took into

account the differences in number of trials and sessions collected from each mouse and weighted them equally.

Generalized Linear Models
To investigate the encoding properties of single neurons, we fitted Poisson generalized linear models to the deconvolved activity of

each neuron. These analyses refer to the encodingmaps as well as the comparison of encodingmagnitude and time course between

areas in Figures 3, 4, 5, 6, 7, 8, and S4–S8.

Design matrix

The schematic is shown in Figure 3H. Predictors of neural activity were grouped into two main categories: task variables and instan-

taneous movement. Task variables included trial phase (maze position during maze traversal and time elapsed in feedback period/

ITI), binary-valued cue identity, reported choice, outcome (reward or no reward) of current and previous trials, as well as the contin-

uous-valued strategy variables, dynamic choice, and cue-biased running. We also included pairwise interactions between strategy

variables and cue/reported choice/outcome, as well as interactions between cue and dynamic choice. These interactions captured

whether strategy variables changed the neural response to a cue or feedback of the outcome, andwhether neuronswere selective for

a specific combination of cue and choice.

We assumed that neurons responded to these task variables in a trial phase-specific manner, given the transient activity of most of

the neurons that were aligned to a specific epoch of the trial. We thus constructed a set of basis functions for trial phase, consisting of

20 equally spaced position bases during maze traversal and 16 temporal bases spanning 0-5 seconds in feedback period/ITI. These

bases were parametrized as raised cosine bumps (Pillow et al., 2008):

biðxÞ =

8><
>:

1

2
cos

�
2pðx � ciÞ

w

�
+
1

2
; for jx � cij<w

2

0 ; otherwise

where x is the maze position or time elapsed, ci is the center location of the ith kernel, and w is the width for the basis functions (4

times of the spacing between center locations). Themouse’s actual position during traversal and time elapsed in feedback period/ITI

were first expanded with the trial phase basis functions. To load the task variables onto these basis functions, we took interactions

between the time series of each task variable and the expanded position/temporal bases, resulting in 273 (20 + 16) = 972 predictors

for expanded task variables.

On the other hand, neurons encoding instantaneous movement should respond to movement variables consistently in a trial

phase-invariant way. These variables included the 3-channel running velocity and acceleration signals as well as the pairwise inter-

actions between velocities and between accelerations. To allow non-linear tuning for potentially complex movement features, we

rank-transformed the velocity and acceleration signals within individual sessions and expanded with 7-degree-of-freedom b-splines

using the patsy Python library (7 basis functions for each linear term and 49 basis functions for each pairwise interaction term). This

resulted in 7 3 6 + 49 3 6 = 336 predictors for movement variables.

To account for slow changes in fluorescence signals caused by possible sample drift within a session, and our corrective manual

realignment, we also included an offset term and a linearly increasing term for frames collected in every image acquisition block (see

STAR Methods section two-photon calcium imaging). These terms collectively represented a discontinuous piecewise function

aligned to image acquisition blocks within a session, whichwould reflect sample drift in the brain relative to themicroscope’s imaging

plane. We then excluded neurons that had greater than 10% of null deviance explained by these terms from subsequent analyses,

which we observed in a small subset of data to be indicative of failures to correct for sample drift. All the predictors were concate-

nated and z-scored independently to form the design matrix.
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For the additional models shown in Figures S4D, S4E, and S5M, we included temporally shifted movement kernels to investigate

the encoding of past and upcoming movement. The velocity and acceleration signals were expanded with 5-degree-of-freedom

b-splines and were shifted every 1/3 seconds for 2 seconds into the past and 2 seconds into the future. We did not include pairwise

interaction terms for this model to avoid over-parameterization. For the other additional models shown in Figure S5N, we included a

new variable ‘‘subjective lateral distance’’ which quantified the imaginary lateral displacement as if the mice were doing path inte-

gration based on their locomotor movement even without actual displacement in the stem of the virtual maze (as imposed by the

experimental constraint). We calculated the accumulated sum of roll velocity at each timepoint for every trial as the numerical inte-

gration, z-scored the values across all trials in each session, and expanded with the position bases before including them into the

design matrix.

Fitting procedure

The model was fit using custom-built code in Tensorflow 1.13.1 (Available at https://zenodo.org/badge/latestdoi/491659726). We

used Adam optimizer (learning rate 0.001) for batch gradient descent to minimize Poisson loss (tf.nn.log_poisson_loss) with group

lasso penalty (Yuan and Lin, 2006):

l
X
i

ffiffiffiffi
gi

p kwik2

where l is the regularization strength, gi andwi are the size and weight vector for variable group i, and k,k2 is the Euclidean norm.

Predictors of the same variables expanded with different basis functions were assigned to the same groups. The group lasso penalty

encourages sparsity between tuning to different variables, but non-sparse L2 regularization on the within-variable bases. All the trials

within individual sessions were first split into 80% training trials and 20% test trials. On the 80% training data, we performed a 5-fold

cross validation (split on trials) fitting procedure to select the optimal l value (a series of 21 logarithmically spaced values between 10-

5 to 10-1) for each neuron. In each fold, separate models were fitted on data points in 80% of the training trials with different l values,

and predictions were made on the 20% held-out training trials. Mean deviance on the predicted data across 5 CV folds was calcu-

lated and compared across all l values to select the optimal one. All training datawere then fittedwith the optimal l value to obtain the

model coefficients. Model performance was evaluated as the fraction of Poisson deviance explained on the 20% test data (Figures 3I

and S3D):

Devðy;mÞ = 2
X
t

�
yt log

yt
mt

� yt þ mt

�

fraction deviance explained = 1 � Devmodel

Devnull

where is the data, is the model prediction, and null deviance is the deviance of a null model that predicts the mean of the data at all

timepoints.

For analyses of the encodingmagnitudes of single neurons (Figures 3, 4, 5, 6, 7, and 8; Figures S4–S8), we included well fit neurons

(fraction deviance explained on test data > 0.2). 42,998 neurons were selected, including 7,775 neurons in V1, 4,934 neurons in PM,

6,878 neurons in AM, 3,991 neurons in MM, 10,329 neurons in RSC, and 9,091 neurons in area A. In Figures S8K–S8O, we included

neurons with worse fits (fraction deviance explained on test data > 0.1), resulting in 68,532 neurons (11,240 neurons in V1, 7,190 neu-

rons in PM, 10,790 neurons in AM, 6,788 neurons in MM, 17,074 neurons in RSC, and 15,450 neurons in area A).

Quantification of fraction explained deviance for individual variables (without re-fitting)

The schematic is shown in Figure S3G. To determine the contribution of individual variables (such as cue, dynamic choice, or roll

velocity) or related groups of variables (such as all movement variables, all task variables, or all strategy variables) for predicting neu-

ral activity, we calculated the ‘‘fraction explained deviance’’ for target variable(s) in the GLM. For data points to be evaluated, we

made two different predictions from a ‘‘full model’’ with all coefficients and an ‘‘ablated model’’ with coefficients zeroed for the target

variable(s). The fraction explained deviance was then computed as the difference in Poisson deviance between ‘‘full’’ and ‘‘ablated’’

models, calculated independently for 36 trial phase bins evenly dividing the full trial, and normalized by the amount of deviance ex-

plained by the full model (averaged over all frames).

fraction explained deviance =
Devablated � Devfull
Devnull � Devfull

For computational feasibility, and tominimize variability due to sub-selecting data, we evaluated the fraction explained deviance on

CV held-out data (80% of full dataset) instead of test data (20%). We confirmed that the difference in the fraction explained deviance

evaluated on the CV held-out data and test data was sufficiently small (0.0010 ± 0.0006, mean ± SEM; Figure S3E), indicating that the

model did not overfit due to the selection process of the single hyperparameter l on CV held-out data. Results for example neurons

were shown in Figure 3J.

To address the potential effect of different regularizations on the encoding magnitude of variables and the conjunctive

structure between pairs of variables, we repeated this procedure with L2 regularization (ridge regression), rather than group lasso.
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The performance of the models on test data was worse on average than those with group lasso (difference in fraction of explained

deviance: -0.0175 ± 0.0052, mean ± SEM; Figure S8D). The L2 regularization assigned weights more evenly to correlated variables,

thus we observed a slight decrease of fraction explained deviance for variables with higher weights (e.g., cue) and an increase for

variables with small weights (e.g., strategy), as well as an increase of correlations between encoding strength of pairs of variables.

Nevertheless, the encoding gradients and comparison of encoding magnitude and conjunctive structure between individual areas

remained consistent (Figures S8E–S8J).

Quantification of fraction null deviance for individual variables (with re-fitting)

The schematic is shown in Figure S3H. In addition to fraction explained deviance, we also performed a conservative procedure to

quantify the contribution of individual variables. We fitted two separate models, one with all variables (‘‘full model’’) and the other

with the target variables removed (‘‘reducedmodel’’), and computed the difference in deviance between the full and reducedmodels

normalized by the null deviance of each neuron’s deconvolved activity. New optimal regularization parameters (l) were selected us-

ing 5-fold cross validation for the reduced models.

fraction null deviance =
Devreduced � Devfull

Devnull

We report results without re-fitting in the main figures (Figures 3, 4, 5, 6, 7, and 8) and include re-fitting in Supplemental information

(Figures S4 and S5), since the advantages of each method are complementary. The procedure without re-fitting is similar to analysis

of the magnitude of a model’s fitted coefficients in a linear model but adapted for a GLM where a nonlinear link function and Poisson

observations canmake interpreting model coefficients difficult. This procedure is in principle a less biasedmethod to disentangle the

relative contribution of correlated variables; however, this disentangling may be inaccurate if the model structure is a poor match for

the actual data-generating process. The procedure with re-fitting is biased, in that it provides a lower bound on a variable’s contri-

bution, rather than an accurate estimate of its true effect. The slack of this lower bound also depends on which other correlated vari-

ables are included besides the variable of interest. However, this method may be less susceptible to mismatch between model and

data structure and so is a robust and conservative estimate of a variable’s contribution. Our results were qualitatively similar using

both procedures.

Decoding analyses with population activity
Trial phase-specific logistic decoders

These analyses refer to Figures 3Q, 4D, 8C, 8D, S5F, S5G, S5K, and S5L. To decode the cue identity, reported choice, dynamic

choice and cue-biased running from the neural population activity, we divided simultaneously imaged neurons from individual ses-

sions into spatially adjacent, non-overlapping subpopulations of�100 neurons. All recorded layer 2/3 neuronswere included, without

selection based on their GLM fit quality. To reduce over-parameterization of the model, we performed PCA on the deconvolved ac-

tivity of the subpopulation and used the lowest number of principal components that accounted for >90% of variance for population

decoding. We then fit a logistic regression to decode cue identity, reported choice, dynamic choice or cue-biased running on single

imaging frames, using the lassoglm function in Matlab with a binomial distribution and elastic net regularization consisting of 10% L1

and 90% L2. We fit separate models for data in 11 equally spaced position bins spanning the maze length, to allow trial phase-spe-

cific decision boundaries arising from transient neural activity. The fitting was performed with 5-fold cross validation to generate pre-

dictions at each data point. The performance of the decoder was evaluated as the log likelihood (for binary variables) or Spearman

correlation (for binary and continuous variables) between the true and predicted values on held-out data. The cortical location of each

decoder was computed as the centroid of all neurons in that subpopulation. For Figures 8C, 8D, and S5L, decoders were assigned

into one of the 6 discrete areas according to their centroid locations. We obtained 698 decoders for Figure 8C (V1: 100, PM: 79, AM:

122, MM: 62, RSC: 157, A: 178) using only sessions with cue offset at 0.76 of maze length, 974 decoders in Figure 8D (V1: 151, PM:

106, AM: 149, MM: 108, RSC: 233, A: 227), and 998 decoders in Figure S5L (V1: 154, PM: 110, AM: 157, MM: 112, RSC: 236, A: 229).

Trial phase-invariant linear decoders for instantaneous movement

This analysis refers to Figure S4I. To decode instantaneous movement (pitch, roll, and yaw velocities and accelerations) from pop-

ulation activity, we first divided simultaneously imaged neurons into subpopulations of �100 nearby neurons and reduced model

overparameterization using PCA as described above, and then used linear regression to train and predict each of themovement vari-

ables from all timepoints of the denoised deconvolved activity with 10-fold cross validation. Decoder performance was reported as

the Spearman correlation between the true and predicted values on held-out data.

Analysis of dynamic choice and cue-biased running at matched positions
These analyses refer to Figures S5J–S5L. In these analyses, we wanted to compare the neural activity related to the dynamic choice

and cue-biased running, given that these quantities were both derived from temporally integratedmovement signals using the LSTM,

but described different aspects of the mouse’s behavior during decision-making process. Since the time course and range of magni-

tude of dynamic choice was different from those of cue-biased running, and varied across individual sessions, we compared neural

representations at timepoints around the maze positions at which the LSTM decoding performance of reported choice and cue were

matched. For individual sessions, the trial-averaged decoding performance (log likelihood) of reported choice and cuewas calculated

as a function ofmazeposition, and the positions atwhich the average log likelihood of both signals reached a thresholdwere identified
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over a range of threshold values (Figure S5J). Thresholds were spaced by 0.1 and spanned across of the range of decoding perfor-

mance for that session.We then examined theGLM-derived encodingmagnitudeof single neurons aswell as thepopulation decoding

performance for dynamic choice and cue-biased running at thematched positions for each threshold level. For single-neuron encod-

ing, the fraction explained deviance of dynamic choice and cue-biased running at the matched positions were extracted and

compared atdifferent threshold levels. For populationdecoding,we trained logistic decoders on the three closest timepoints recorded

around thematchedmaze positions for all trials using the sameprocedure described in the section decoding analyseswith population

activity, andcompared themodel performance (Spearman correlation) for decoding of dynamic choice vs. cue-biased running at each

threshold level. For comparison of both encoding magnitude and decoding performance, we averaged the values over all threshold

levels and generated spatial maps or statistics for discrete areas, since results were similar for a wide range of individual thresholds.

Quantification of distributedness
Intuitive models

These analyses refer to Figures 5B–5D and S6A–S6C. We developed two intuitive models to quantify the degree of distributedness

for single-neuron encoding strengths across cortical areas. For both models, we first constructed a fully modular configuration with

1000 neurons for each of the 6 areas. We assigned a rank of encoding strength to all 6000 neurons and then assigned the area labels

as contiguous, non-overlapping sets, i.e. neurons with rank 1-1000 belonged to area 1, rank 1001-2000 belonged to area 2, etc., as

shown in first panel from the left in Figure 5D. Therefore, in the fully modular case, the encoding strength of a neuron is completely

informative of its area label and vice versa.We quantified themutual information between the rank of encoding strength and area label

using the mutual_info_classif function from Scikit-learn.

For the random fractionmodel (Figure 5B), we initiated the fully distributedmodel by randomly assigning area labels to the neurons so

that the encoding is completely dispersed across areaswith zeromutual information.We then created different intermediatemodels by

mixing neurons from the fully modular and the fully distributed models, parametrized by the fraction of the fully distributed model

(‘‘random fraction’’), and computed the mutual information normalized by that of the fully modular model. When the random fraction

is closer to zero, the organization is more similar to fully modular, with larger distinctions between areas, whereas when this fraction

is closer to one, the organization ismore similar to fully distributed, with nearly no differences between areas.We repeated this process

100 times for 100 linearly spaced random fraction values from 0.01 to 1 to build the average normalizedmutual information vs. random

fraction curve inFigureS6B.For the ‘‘jitter’’model (Figure5C),weperturbed thedistributionof the fullymodularmodel byadding random

Gaussian noise parametrizedwith ‘‘jitter’’, i.e. the standard deviation of the noise, into the rank of encoding strength. The perturbed rank

was then re-ranked, and the normalized mutual information between the rank of encoding strength and area label was calculated. We

repeated this process 100 times for 491 linearly spaced jitter values from0.1 to 5 to build the average normalizedmutual information vs.

jitter curve in Figure S6C. These two intuitive models were complementary to each other. The random fraction model put the measure-

ment of distributedness on a bounded range between zero and one and was easier to interpret, whereas the jitter model created simu-

lated distributions that resembled the empirical distributions (Figure 5D).

Quantification on single variable encoding

These analyses refer to Figures 5E, 5F, and S6A. For each of the selected variables, we first determined the relevant epoch for encod-

ing, e.g. stemperiod for cue,mazeposition and dynamic choice, feedback period for reported choice and outcome, andwhole trial for

movement, and identified active neurons in that epoch by selecting neurons with epoch-averaged null deviance in their deconvolved

activity greater than their trial-averaged null deviance.We then subsampled 1000 active neurons in each area, rank-transformed their

encoding strength (fraction explained deviance of that variable), and computed the mutual information between the rank of encoding

strength and area label, normalized by that of the fully modular model. This process was repeated 1000 times to compute mean and

standard error. To compute the ‘‘equivalent random fraction’’ or the ‘‘equivalent jitter’’ for the selected variable, we identified the

random fraction or jitter value by searching the nearest neighbor of themean normalizedmutual information based on the normalized

mutual information vs. random fraction or jitter curve. The selection procedure for epoch-specific active neurons resulted in 47% of

neurons active during stem traversal (total 20,202 neurons; V1: 3641, PM: 2313, AM: 3350,MM: 1855, RSC: 5720, A: 3323) and 30%of

neurons active in feedback period/ITI (total 12,719 neurons; V1: 2441, PM: 1208, AM: 1756, MM: 1040, RSC: 2341, A: 3933).

Besides the mutual information-based methods, we also performed a complementary approach to quantify the degree of distrib-

utedness based on decoding with discretized area labels. For each of the selected variables, we first identified the area with the high-

est average encoding strength, e.g. V1 for cue and area A for movement, and used logistic regression to decode neurons residing in

this area from neurons in all other 5 areas based on the encoding strength of that variable, whichwe called ‘‘max vs. others’’ decoding

(Figure S6D). Separately, we constructed 15 pairwise decoders that distinguished neurons from each pair of areas. Decoding was

done using the LogisticRegression function from Scikit-learn with leave-one-mouse-out cross validation, and we reported the area

under ROC on held-out data as an alternative measurement of the degree of distributedness. The auROC would equal 1 for the fully

modular case and 0.5 for the fully distributed one.We subsampled 1000 neurons from each area for this analysis and repeated it 1000

times to compute mean and standard error.

Decoding anatomical locations from single-neuron encoding profiles
These analyses refer to Figures 6A, 6B, S6E, and S6F. To relate a neuron’s encoding properties to its anatomical location in the

cortical space, we decoded each neuron’s cortical location from its GLM-derived encoding profile (Figure 6A). For each neuron,
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we computed the encoding profile as the mean fraction explained deviance of individual task and behavioral variables (trial phase,

cue identity, reported choice, outcome of previous and current trials, decision-making strategy, dynamic choice, cue-biased running,

interaction between cue and dynamic choice, and instantaneousmovement and their pairwise interactions) over 6 different epochs of

the trial (first and second half of maze stem, maze arm, delay between reported choice and feedback, feedback period, and reward

consumption/ITI). To decode location continuously across posterior cortex, we used an array of logistic regressions with centers on a

grid with 0.15 mm spacing (total 241 decoders). Each decoder was trained to predict the presence of a neuron nearby to that de-

coder’s center location, using its encoding profile. For each neuron, the target value for each decoder was a smooth function of dis-

tance from that decoder’s center location to the neuron’s actual location:

yi;j = e
�kxi �cjk2

2s2

where yi;j is the target value of neuron i for decoder j, xi is the cortical location of neuron i, cj is the center location of decoder j, and s

is the standard deviation of the gaussian kernel (we used 0.15 mm).

The location decoderswere fitted using logistic regressionwith our custom-built GLMcode in Tensorflow tominimize cross-entropy

loss with L2 regularization (Adam optimizer, learning rate: 0.01). We performed cross-validation in a leave-one-mouse-out manner: for

every CV fold, the decoders were trained on neurons from 7mice and tested on the 8th mouse. The predictions of each decoder were

corrected by dividing by the sampling density of neurons at that location (to correct for a non-flat prior across space). Predictions for

each neuron were then normalized across all decoders to a sum of 1 to generate a probability distribution over cortical space.

bycorr

i;j =
byi;jP
i

yi;j
bynorm

i;j =
bycorr

i;jP
j

bycorr

i;j

where byi;j is raw output for neuron i for decoder j, bycorri;j is the corrected output after adjusting the non-flat prior, bynormi;j is the final

prediction after normalization across predictions from all decoders.

Non-negative matrix factorization of decoded locations
These analyses refer to Figures 6C, 6D, 6G, and S6G–S6I. Factorization of decoded neuron locations was performed using the NMF

function from Scikit-learn to approximate thematrix of predictions for all neurons across all decoder locations (42,998 neurons3 241

decoded locations; Figure 6C). Separate factorizations were fit with a sequence of increasing numbers of factors (n_components, k =

1 to 10; Figure S6I). Factorization with k = 3 resulted in 34%of reconstruction error, with far less improvement by addingmore factors.

We thus presented the results with three factors. The characteristic encoding profile for each factor shown in Figure S6G was calcu-

lated as the average decoder coefficients of individual task and behavioral variables, weighted by the scores of each decoder/loca-

tion on each factor:

fi;k =

P
j

sj;k,wi;jP
j

sj;k

where fi;k is theweighted encodingmagnitude for variable i of factor j, sj;k is the decoder score for decoder j of factor k, andwi;j is the

coefficient for variable i of factor j.

Linear embedding of single neuron encoding profiles
These analyses refer to Figures 6F, 6G, and S6J–S6L. To investigate the heterogeneity of the single-neuron encoding within and

across areas, we generated a linear embedding of each neuron’s encoding profile in a 2-dimensional encoding space (Figure 6F),

using the coefficients of decoders trained to predict location from encoding profiles. Each location decoder was trained to predict

the presence of a neuron near its center location, resulting in a vector of coefficients in encoding space which was most useful for

differentiating a neuron’s proximity to the center location. We expected nearby location decoders to be similar to each other, and the

total structure of variability across all locations to be much lower dimensional than the full number of location decoders. Thus, we

performed principal component analysis on the full set of location decoder coefficients to identify the vectors in neural encoding

space that were most relevant in differentiating the location of a neuron (Figure S6J). We then construct the encoding space using

the first two principal components as the x and y axes. Each neuron’s coordinate in the 2-D encoding space was computed by pro-

jecting its encoding profile onto the embedding axes. We also used kernel smoothing (gaussian_kde from SciPy, bw_method =

‘scott’) to generate empirical densities of neurons from a single cortical area in the 2-D encoding space, from which we estimated

the peak and 25% density contour used for visualization (Figure 6H). The dendrogram, which captured the similarity of the averaged
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encoding between areas, was computed based on the Euclidean distances between the centroids of all neurons from 6 areas in the

full-dimensional encoding space used for location decoders, using the linkage (method = ‘average’) and dendrogram function

from SciPy.

Analyses of conjunctive structure
Correlation between encoding of pairs of variables

These analyses refer to Figures 7D–7F andS7D–S7G. To compute the correlation between encoding strength of pairs of variables, we

first removed spatial differences in average encoding strength by subtracting the local mean calculated in smoothed encoding maps

(SD = 150 mm) as shown elsewhere in the paper.Without this subtraction, correlations in encoding strengthmight be biased by spatial

gradients of encoding strength which do not perfectly align with area boundaries. We also identified active neurons for the relevant

epoch for each correlation, to prevent possible biases in correlation contributed by neurons with little or no activity. Active neurons

are defined as neurons with epoch-averaged null deviance in their deconvolved activity greater than their trial-averaged null deviance

(See the section quantification of distributedness, quantification on single variable encoding). Computing correlations of fraction ex-

plained deviance between certain sets of variables (e.g. example movement and position) exhibited large negative correlations, as

might be expected when the total explained deviance is similar to the sum of explained deviance. To avoid this bias, we instead

computed all correlations using the fraction null deviance instead of fraction explained deviance.We then computed the Pearson cor-

relation between the spatial-mean-subtracted encoding strength of selected pairs of variables for neurons in individual areas.

Decoding of area based on encoding correlations versus encoding strengths

These analyses refer to Figures 7G, 7H, S7H, and S7I. For decoding of area labels based on the encoding correlations between pairs

of variables, we z-scored the spatial-mean-subtracted encoding strength for neurons within individual areas and took the pairwise

interaction between these for 11 selected variables (trial phase, cue identity, reported choice, outcome of previous and current trials,

decision-making strategy, dynamic choice, cue-biased running, interaction between cue and dynamic choice, and instantaneous

movement and their pairwise interactions), for stem traversal or feedback period/ITI. Only active neurons for each of the relevant

epoch were included. We then decoded the area labels using only these ‘‘interaction terms’’, only linear terms of single variable en-

coding strengths, and a combination of both linear and interaction terms. We performed two types of decoding: 6 one-vs.-others

decoders that distinguished neurons from each of the 6 areas versus all the other neurons not from this area, as well as 15

pairwise decoders that distinguished neurons from each pair of areas. Decoding was done using the LogisticRegression function

from Scikit-learn, and the performance was quantified as the area under ROC on held-out data using leave-one-mouse-out cross

validation.

We repeated these analyses with encoding strength estimated based on GLMs fitted using L2 regularization, which handled corre-

lated variables differently than group lasso. The correlations between individual pairs of variables were higher than those with group

lasso as expected from the effect of L2 regularization (Figure S8H); however, the results of decoding of area were consistent with

those with group lasso (Figures S8I and S8J).

Quantification of shattering dimensionality for conjunctive variables
These analyses refer to Figures 8E–8G and S8A–S8C. To quantify the dimensionality of population representations for conjunctive

conditions formed by two or more variables, we modified the procedure described in Bernardi et al. (2020). The central idea is to

construct dichotomies by partitioning these conjunctive conditions into two sets and use linear classifiers to decode these dichot-

omies from population activity. The higher the dimensionality is, the better the decoders can perform. For continuous variables such

as maze position and movement, we discretized their values into several bins. In order to keep the total number of conditions similar

for analyses of different conjunctions, we used 2 bins for cue or choice, 3 bins for rule belief, 10 linearly spaced position bins for cue-

or choice-by-maze position, 6 position bins for cue-by-belief-by-position, 4 position bins for cue-by-choice-by-position, and 6

quantile bins for each axis of velocity. For example, the combination of cue and maze position would generate 2 cues3 10 position

bins = 20 conjunctive conditions. For k conjunctive conditions, there are 2k possible dichotomies and

�
k
k=2

�
balanced dichotomies

(where the dichotomous sets are equally sized). We further restricted our analysis on ‘‘marginally balanced dichotomies’’ which

contain the balanced number marginal conditions for each class (Figure 8E), because these dichotomies are only separable when

encoding of the two variables exhibits nonlinear mixing. For the example of cue-by-position, each class in one of the marginally

balanced dichotomies would contain 5 conjunctive conditions with black cue and 5 with white cue, as well as one conjunctive con-

dition for each of the 10 positions. Populations with pure encoding of cue or position, or linear mixing of the two, would thus be un-

informative for decoding regardless of the encoding strength.

Because we aimed to compute dimensionality formed by a large number of neurons, and potentially spread across large areas of

posterior cortex, we focused our analysis on trial-averaged neural tuning rather than simultaneously recorded populations. We thus

constructed pseudo-populations by pooling neurons across sessions and mice. We set up 481 center locations on a grid of 0.1 mm

spacing across the cortical space in posterior cortex (Figures 8F and S8A). For each center location, we identified N nearest neurons

from all neurons pooled across sessions and mice, where N was the population size. To generate training and test data for each

neuron, we first identified all frames that occurred during each conjunctive condition within each trial during stem traversal, and
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took the average of the deconvolved activity to create a ‘‘trial sample’’ for that conjunctive condition. Next, we split all the trial sam-

ples for each conjunctive condition into training and test set with a 50-50 split, unless the number of test trials exceeded 30 trials in

which case they were added to the training set. We then standardized the trial samples using the mean and standard deviation of the

training set and took the average over all samples for both training and test sets. We concatenated data from each pseudo-popu-

lation into training and test matrices of k conditions3N neurons and built linear SVMs to classify all marginally balanced dichotomies

with the SVC function in Scikit-learn. We repeated the train-test split and decoding procedure 10 times. We reported the average

classification accuracy on test data across all these dichotomies and all splits as the ‘‘shattering dimensionality’’ to measure the

dimensionality of conjunctive neural representations.

In order to determine the statistical significance of differences in shattering dimensionality between areas, we repeated the analysis

described above using pseudo-populations defined by area boundaries rather than proximity to center locations (Figures 8G, S8B,

and S8C). Specifically, we used a hierarchical bootstrap to resample N neurons from within a specific area, or randomly across all

areas in our dataset. We then performed decoding as described above for each of the 1000 bootstrap samples to obtain distributions

used to compute mean and standard error within area, and statistical significance between each area’s dimensionality.

We repeated the analyses on different population sizes of 100, 250, 500, 1000, and 2000 neurons. All recorded layer 2/3 neurons

were included, without selection based on their GLM fit quality. For each population size and each conjunction of variables, we

selected the best hyperparameter C for the SVC function from a list of values: 0.01, 0.1, 1.0, and 10.0. The selected C for

Figures 8F, 8G, S8A, and S8B with population size = 1000 are C = 1.0 for cue-by- position, and C = 0.1 for all other conjunctions

of variables.

Analysis of dimensionality of encoding across neurons versus encoding across cortical space
An interesting question one may have about the spatial structure of encoding is how the diverse encoding profiles across single neu-

rons and the resulting seemingly complex encoding maps for individual variables give rise to the three functional gradients we

observed. Here, we compare the dimensionality of encoding across single neurons versus encoding of cortical space to address

this issue. The GLM extracted an encoding profile over a large number of task and behavioral predictors for every neuron, and collec-

tively the encoding across neurons varied in a high dimensional encoding space given the diversity of encoding profiles. However, the

dimensionality of encoding across neurons could be higher than the dimensionality of encoding across cortical space, or the number

of distinct spatial gradients. This is because neurons that encode a set of variables could show no significant structure in their

distribution across cortical space, or two distinct sets of variables could have similar encoding profiles across cortical space. Relat-

edly, in our previous work (Minderer et al., 2019), an artificial neural network was used to identify 64 distinct features related to optic

flow, locomotion, and various task events that contributed to single neuron activity in posterior cortex during a visually-guided loco-

motion task. Althoughmost of these features exhibited non-uniform encoding over cortical space, many of these spatial profiles were

similar. This indicates a reduced dimensionality from encoding across neurons to encoding across cortical space, even though the

number of distinct spatial gradients was not explicitly quantified in that study. In the present study, the distinct spatial gradients were

identified based on the decoding of anatomical locations from single-neuron encoding profiles. In particular, the location decoders

extract the part of the encoding profiles that is informative of a neuron’s cortical location, by assigning large weights to those spatially

informative variables and converting single-neuron encoding profiles across variables to decoded probabilities across cortical

locations.

To compare the dimensionality of encoding across neurons versus encoding across space, we considered the following three

matrices: (1) the fitted GLM coefficients for individual task and behavioral variables (the matrix of neurons by coefficients for all vari-

ables), (2) the encoding strengths for individual task and behavioral variables (thematrix of neurons by fraction explained deviance for

all variables), and (3) the outputs of the location decoders (the matrix of neurons by decoded location which we performed factor-

ization on). Both matrices 1 and 2 describe encoding across neurons, but the entries in matrix 1 are signed, which captures both

the directionality and magnitude of the tuning and is expected to have the highest dimensionality, whereas matrix 2 only represents

the magnitude of the tuning with reduced dimensionality. Matrix 3 captures encoding across cortical space and is expected to

show the lowest dimensionality. To confirm this, we performed principal component analysis to estimate the linear dimensionality

of these three matrices. The number of principal components needed to explain 70% of the variance in the three matrices was 8,

6, and 3, respectively, and further, 35, 23, and 16 principal components were needed to explain 95% of the variance. These results

thus justify how a small number of spatial gradients can describe the encoding across cortical space, even with the encoding profiles

of individual neurons being diverse and relatively higher-dimensional.
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