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Single-neuron perturbations reveal 
feature-specific competition in V1
Selmaan N. Chettih1 & Christopher D. Harvey1*

The computations performed by local neural populations, such as a cortical layer, are typically inferred from anatomical 
connectivity and observations of neural activity. Here we describe a method—influence mapping—that uses single-
neuron perturbations to directly measure how cortical neurons reshape sensory representations. In layer 2/3 of the 
primary visual cortex (V1), we use two-photon optogenetics to trigger action potentials in a targeted neuron and calcium 
imaging to measure the effect on spiking in neighbouring neurons in awake mice viewing visual stimuli. Excitatory 
neurons on average suppressed other neurons and had a centre–surround influence profile over anatomical space. A 
neuron’s influence on its neighbour depended on their similarity in activity. Notably, neurons suppressed activity in 
similarly tuned neurons more than in dissimilarly tuned neurons. In addition, photostimulation reduced the population 
response, specifically to the targeted neuron’s preferred stimulus, by around 2%. Therefore, V1 layer 2/3 performed 
feature competition, in which a like-suppresses-like motif reduces redundancy in population activity and may assist with 
inference of the features that underlie sensory input. We anticipate that influence mapping can be extended to investigate 
computations in other neural populations.

We studied how local groups of neurons in layer 2/3 of mouse V1 
reshape representations, by perturbing identified neurons and moni-
toring the resulting changes in the local population. Layer 2/3 encodes 
various features of visual stimuli, including stimulus orientation; these 
features are also encoded in its inputs from layer 41–3. It has been pro-
posed that layer 2/3 reshapes these inherited representations through 
‘feature amplification’ to increase the magnitude and reliability of a 
stimulus response4,5. Amplification is based on the idea that activity 
in one neuron enhances the activity of similarly tuned neurons more 
than that of dissimilarly tuned neurons. In support of this hypothesis, 
excitatory neurons with similar tuning have stronger and more frequent 
monosynaptic connections5–9. Alternatively, theoretical work10–13 and 
related experimental findings14–16 have suggested that competition is 
critical for the computational goals of V1. We can generalize the pre-
dictions of this work as ‘feature competition’: the activity of a neuron 
suppresses that of similarly tuned neurons more than dissimilarly tuned 
neurons. Feature competition can reduce redundancy in a population 
representation10 and differentiate representations of similar stimuli 
that cause overlapping sensory receptor activity, thus assisting with 
inference of the properties of external stimuli12,17. Feature amplification 
and feature competition could also co-exist between different subsets 
of neurons within a population.

These hypotheses make direct predictions of how the activity of one 
neuron will affect nearby neurons. This effect is difficult to measure 
with existing methods because it is both causal and functional. For 
example, it is challenging to predict from monosynaptic connectiv-
ity5,8,9,18 how one neuron’s spiking will affect another’s, because connec-
tivity profiles are typically incomplete (often limited to less than 50 µm) 
and contributions from all polysynaptic pathways (for example, disyn-
aptic inhibition19–21) must be simultaneously considered. Also, from 
activity measurements alone, as in functional connectivity studies22, 
it is difficult to establish causality. Therefore, we extended previous 
work21,23–29 and developed a method—influence mapping—in which 
we optically triggered action potentials in a targeted neuron to directly 

measure its functional influence on neighbouring, non-targeted neu-
rons with known tuning (Fig. 1a).

Photostimulation of targeted neurons
We co-expressed the calcium sensor GCaMP6s and a red-shifted chan-
nelrhodopsin (C1V1-t/t or ChrimsonR)30,31 in layer 2/3 V1 neurons 
(Fig. 1b). Opsin expression was restricted to excitatory neurons using 
the CaMKIIα promoter. We targeted localization of channelrhodopsin 
to the soma using a motif from the Kv2.1 channel32 (Extended Data 
Fig. 1a). This localization should improve the specificity of influence 
measurements by reducing photostimulation of the axons and dendrites  
of non-targeted neurons near the target site33. In tuning measurement 
blocks, we measured neural responses to contrast-modulated gratings 
with varying drift direction, spatial frequency, and temporal frequency 
(Fig. 1c, top). In influence measurement blocks, we independently 
scanned two lasers of different wavelengths to simultaneously image 
neuronal activity across the population and photostimulate individual 
targeted neurons with two-photon excitation (Extended Data Fig. 1b). 
Photostimulation was time-locked to the onset of low contrast (10%) 
drifting gratings (eight directions, fixed spatial and temporal frequen-
cies) to measure influence in the context of visual stimulus processing 
(Fig. 1c, bottom). Photostimulation induced cell-shaped increases in 
fluorescence at the target site, indicating that targeted neurons were 
selectively photostimulated (Fig. 1d–f, Extended Data Fig. 1c, e, 
Supplementary Videos 1, 2).

To examine the resolution of photostimulation, we limited opsin 
expression to a very sparse set of neurons and monitored photostim-
ulation responses in an isolated opsin-expressing neuron. Responses 
decreased with distance between the neuron and photostimulation 
target, and were not significant beyond 25 μm (Fig. 1e, f, Extended 
Data Fig. 1d). To be conservative, all subsequent analyses excluded 
neuron pairs with lateral separation below 25 μm. To further control 
for off-target photostimulation in influence mapping experiments, we 
expressed channelrhodopsin in a moderately sparse subset of excitatory 
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neurons (around 20–60 neurons in 0.3 mm2 cortex; Fig. 1b) to reduce 
the presence of opsin-expressing neurons adjacent to photostimulation 
targets. Furthermore, we interleaved trials in which opsin-expressing 
neurons were targeted with trials in which we targeted control sites 
that lacked an opsin-expressing cell (Fig. 1b). Control sites accounted 
for effects arising from nonspecific photostimulation (including in the 
axial dimension). Control photostimulation triggered no fluorescence 
changes near the target (Fig. 1d, Extended Data Fig. 1c).

To estimate the amplitude of activity induced by photostimulation, 
we performed cell-attached electrophysiological recordings in anaes-
thetized animals, without presented visual stimuli. Photostimulation 
induced approximately six spikes in the targeted neuron within the 
approximately 250-ms photostimulation window (Fig. 1i, j). During 
influence measurement blocks in awake mice, photostimulation  
concurrent with low-contrast visual stimuli increased the activity of 
targeted neurons above the levels evoked by the visual stimuli alone, as 
expected (Fig. 1h). Activity in targeted neurons following photostimu-
lation during the presentation of low-contrast visual stimuli was slightly 
lower than responses to optimal gratings in the tuning measurement 
block (Fig. 1g, h). Photostimulation therefore induced activity that did 
not exceed physiologically relevant levels. The magnitude of photostim-
ulation did not vary strongly with other properties of the cell, including 
visual stimulus tuning (Extended Data Fig. 1f, g).

The magnitude of influence in layer 2/3 of V1
We quantified the change in activity of each non-targeted neu-
ron following photostimulation. Using the deconvolved activity of 
non-targeted neurons, we calculated an influence metric ΔActivity: 
the response on individual photostimulation trials minus the average 
response on control trials with the same visual stimulus, normalized by 
the standard deviation of this difference over all trials (Fig. 2a, left). We 
averaged a neuron’s ΔActivity over all trials for individual photostimu-
lation targets to obtain an influence value for each pair of targeted and 
non-targeted neurons. We identified positive (excitatory) and negative 
(inhibitory) influence (Fig. 2a). Influence values corresponded to soma-
shaped fluorescence changes in raw images centred on the non-targeted 
neuron (Fig. 2b). We also developed a metric that expressed influence 
as a probability that a non-targeted neuron was excited or inhibited 
following photostimulation. This metric was robust to the varyingly 
asymmetric and heavy-tailed distributions of activity of individual neu-
rons, and revealed similar findings (Extended Data Fig. 2).

We compared influence following photostimulation of neurons and 
control sites using a leave-one-out procedure to calculate ΔActivity 
for control sites. Control values deviated from zero because of random 
sampling of neural activity and potential off-target effects. However, 
the magnitude of influence values following neuron photostimulation 
were around 4% larger than for control photostimulation (Fig. 2c). 
This effect arose in part because individual excitatory neurons had an 
average inhibitory effect on other neurons (Fig. 2d). In addition, for 
individual targeted neurons, influence values had around 4% greater 
dispersion than expected based on control sites (Fig. 2e). This larger 
dispersion indicated that a neuron differentially affected specific 
non-targeted neurons, potentially governed by similarities between 
targeted and non-targeted neurons.

We tested this idea by analysing influence as a function of the 
anatomical distance between neurons. The magnitude of influence 
decreased with distance, although it remained above control levels for 
all distances (Fig. 2f). The relative strengths of excitatory and inhibitory 
influence varied: on average, neurons less than 70 μm apart showed 
excitatory influence, maximum inhibitory influence was present 
around 110 μm, and net influence was balanced at longer distances 
(over 300 μm; Fig. 2g). Influence therefore had a centre–surround rela-
tionship with distance. Because there were fewer pairs at smaller dis-
tances, the average influence we observed was negative. Influence was 
most suppressive at distances at which the receptive fields of neurons 
partially overlapped (~12° receptive field width, ~10 μm per degree 
retinotopic magnification)34. Influence following control site photo-
stimulation exhibited weak spatial structure, consistent with small 
off-target excitation (Fig. 2f, g).

To put these effects on a functional scale, we compared influence to 
single-trial variability in a neuron’s response. Influence values in units 
of ΔActivity were, by definition, a fraction of trial-to-trial variability. 
Moreover, the variance of the true effect of one neuron’s activity on 
another can be calculated as the difference in variance of influence values  
following neuron and control photostimulation. This calculation 
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Fig. 1 | Photostimulation of targeted neurons. a, Influence mapping 
schematic. b, Example field-of-view with neuron (red) and control (blue) 
photostimulation sites. c, Top, tuning block measured responses to drifting 
gratings with varying direction, spatial frequency (SF), and temporal 
frequency (TF). Bottom, influence blocks presented 10% contrast visual 
stimuli simultaneously with single-neuron photostimulation.  
d, Photostimulation-triggered average fluorescence changes from raw 
images centred on targeted neuron sites (n = 31) and control sites 
(n = 10). n = 153 trials per site. e, Left, photostimulation sites (coloured 
circles) near isolated C1V1-expressing neuron. Right, fluorescence 
transients following photostimulation at sites in the left panel.  
f, Response versus distance between centres of photostimulation and soma 
(normalized by median at >65 μm). n = 9 experiments, 3 mice, 98 targets 
at 16,019 sites, 25 trials per site. Compared to >65 μm (n = 13,367 sites): 
P < 1.3 × 10−3 for each bin ≤15–25 μm (n = 774); P > 0.17 for each 
bin ≥25–35 μm (n = 300), Mann–Whitney U-test. g, Left, activity traces 
during tuning and influence blocks. Red dots mark photostimulation 
times. Right, single-trial traces for all photostimulation events during an 
influence block (smoothed for display). Black lines, mean. h, Responses 
to optimal visual stimuli during tuning block (green) and to visual stimuli 
during influence block with (red) or without (blue) photostimulation. 
Influence block with photostimulation versus optimal visual stimulus: 
P < 3.1 × 10−6, Mann–Whitney U-test, n = 518 neurons. i, Example 
of cell-attached electrophysiology during photostimulation. Left, cell 
recorded and targeted for photostimulation, white arrow. Middle, single-
trial trace during photostimulation. Right, raster plot of spikes across all 
trials. Photostimulation (red): four 32-ms-long sweeps at 15 Hz. j, Spikes 
added over four photostimulation sweeps in ~250 ms. Mean ± s.e.m.: 
6.38 ± 1.01 spikes added per trial. n = 9 cells.
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revealed that single-neuron photostimulation caused a 2.1% change 
in another neuron’s activity relative to trial-to-trial variability (quan-
tified by the ratio of standard deviations). We similarly computed 
changes in activity as a fraction of average activity, and observed a 
5.4% effect on other neurons, with a net decrease of about 0.5% in 
population activity. Considering that a neuron exhibits variability 
driven by thousands of synaptic inputs, but we added a few spikes to 
the activity of a single neuron that typically will not be monosynapti-
cally connected5,8,19, these effects are substantial and underscore the 
strength of polysynaptic pathways19,21. Despite this large effect from 
the perspective of brain function, our measurement for individual 
pairs was noisy: we performed 150–200 repeats per pair, but around 
2,500 repeats would be needed for a single-pair signal-to-noise ratio 
of approximately 1. However, by pooling data across more than 10,000 
pairs in each experiment, we obtained high statistical power for results 
at the population level.

Average influence effects could result from strong influence in a 
small fraction of pairs or weaker influence distributed across the pop-
ulation. Removing pairs with the largest positive or negative influ-
ence did not qualitatively change the population results (Extended 
Data Fig. 3a–c). In addition, influence relationships were not signifi-
cantly affected by a neuron’s baseline activity level or other properties 
(Extended Data Fig. 3d–h). Therefore, the addition of a few spikes to 
the activity of a targeted neuron had a distributed effect across many 
non-targeted neurons.

Tuning similarity is inversely related to influence
To test the hypotheses of feature amplification and feature competition, 
we related visual tuning and influence in the same pairs of neurons. In 
blocks without photostimulation, we measured the tuning of neurons 

to gratings with randomly sampled drift direction, spatial frequency, 
and temporal frequency. To estimate neural tuning in the absence of 
identical stimulus repeats, we used a Bayesian nonparametric smooth-
ing method, Gaussian process regression (Fig. 3a, b, Extended Data 
Fig. 4). This method creates a tuning curve by approximating responses 
via comparisons to trials with a similar stimulus, assuming that neural 
responses are a smooth function of stimulus parameters. Gaussian pro-
cess smoothing yielded similar tuning results to a conventional model 
and better predictions of neural activity (Extended Data Fig. 5).

For each pair of neurons, we computed similarity in tuning as a signal 
correlation, measured as the correlation between single-trial Gaussian 
process predictions of each neuron’s visual stimulus response (Fig. 3c). 
We also computed similarity in trial-to-trial variability as a noise cor-
relation, using the correlation between single-trial residuals after sub-
traction of Gaussian process predictions (Fig. 3c). A model-free ‘trace 
correlation’ was computed as the correlation between the neurons’ 
activity throughout the tuning measurement block (Fig. 3c).

We used multiple linear regression to determine how distance, sig-
nal correlation, and noise correlation metrics related to the influence 
between neurons (Fig. 3d). Regression coefficients revealed the sign 
and magnitude of a metric’s relationship to influence, after controlling 
for the effects of other similarity metrics. We used this approach 
because there were correlations between metrics, such as higher activity 
correlations at shorter anatomical distances and a positive correlation 
between signal and noise correlations (Extended Data Fig. 6a, b). We 
included terms for interactions between metrics to consider nonlin-
ear effects, such as a changing relationship between signal correlation 
and influence at different anatomical distances. We complemented the 
regression analysis (Fig. 3e, f) by plotting influence as a function of 
single activity metrics (Fig. 3g–i) and comparing these plots to regres-
sion-based predictions (Extended Data Fig. 6c–f).

The regression results confirmed that influence had a centre– 
surround pattern as a function of distance: near pairs had a negative 
slope, intermediate pairs a positive slope, and distant pairs a slope near 
zero (Fig. 3e, left; compare with Fig. 2g). Furthermore, influence was 
positively related to the noise correlation of a neuron pair (Fig. 3e, 
right). However, the noise correlation-by-distance interaction coeffi-
cient was negative, indicating that the relationship between influence 
and noise correlations decayed with anatomical distance (Fig. 3e, right). 
Therefore, there existed a positive relationship between influence and 
noise correlation for nearby pairs, and little relationship for distant pairs 
(Fig. 3g). This suggests that noise correlations for nearby pairs partially 
reflected local influence, whereas noise correlations over a broad spatial 
range may reflect shared external inputs35.

We then considered the relationship between influence and signal 
correlation. A positive regression coefficient would support feature 
amplification, whereas a negative coefficient would support feature 
competition. Influence had a significant negative relationship with 
signal correlation (Fig. 3e, right). The signal correlation-by-distance 
interaction term was close to zero, indicating that this relationship did 
not vary with anatomical distance (Fig. 3e, right). Influence also seemed 
by direct examination to be more negative for higher signal correlation 
values (Fig. 3h). Therefore, similarly tuned neurons suppressed each 
other’s activity more than dissimilarly tuned neurons, across all dis-
tances examined.

To test which tuning features contributed to this relationship, we 
replaced signal correlation in the influence regression with correla-
tions of individual tuning features. Orientation tuning recapitulated 
the negative relationship with influence, as did temporal frequency, 
indicating that representations of these features were reshaped by recur-
rent computation (Fig. 3f, i). Influence seemed to be unrelated to tun-
ing similarity for running speed and spatial frequency, despite robust 
neural tuning to both of these features (Fig. 3f, Extended Data Fig. 4c, 
d). Local processing may therefore selectively shape only a subset of 
features present in its inputs.

Multiple factors therefore contributed to influence: (1) a centre– 
surround effect of distance; (2) a positive effect of noise correlation 
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calculation of ΔActivity: activity in a non-targeted neuron on single  
trials following photostimulation of neuron site 1 (red) and on control 
trials (blue) with matched visual stimulus (grey box). xt, values for  
all trials with photostimulation of site t. Centre, right, ΔActivity and traces 
for example pairs. Traces smoothed for display; shading is mean ± s.e.m. 
b, Photostimulation-triggered average fluorescence changes from raw 
images centred on all non-targeted neurons for pairs with ΔActivity >0.15 
(left) or <−0.15 (right). c, Influence magnitude (average of |ΔActivity|) 
following photostimulation of neuron site (n = 153,689 pairs) or control 
site (n = 90,705). The non-zero value for control sites is expected because 
of noise due to random sampling of neural activity and potential off-target 
effects. Data shown as mean ± s.e.m. calculated by bootstrap. Neuron 
versus control: P = 1.23 × 10−19, Mann–Whitney U-test. d, Influence 
bias (average of signed ΔActivity values) for a single target is the mean 
ΔActivity across all non-targeted neurons. Data shown as mean ± s.e.m. 
across targets. n = 518 neuron targets, 295 control targets. P = 0.0023, 
Mann–Whitney U-test. e, As in d, but for influence dispersion for a single 
target, which was the standard deviation of ΔActivity across all non-
targeted neurons. P = 2.1 × 10−6, Mann–Whitney U-test. f, Influence 
magnitude versus distance between target site and non-targeted neuron 
for pairs with photostimulation of neuron site (n = 153,689) or control site 
(n = 90,705); shading is mean ± s.e.m (bootstrap), bin half-width of 30 
μm. g, Influence bias versus distance, as in h.
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that decayed with distance; and (3) a spatially invariant negative effect 
of signal correlation, with specificity for distinct stimulus features. We 
verified that these influence patterns were not due to data process-
ing or analysis artefacts by directly analysing traces of the change in 
fluorescence (ΔF/F) (Extended Data Fig. 7a–e). Because photostim-
ulation probably caused weak activation of neurons near the targeted 
neuron, including axially displaced neurons23,24,36 (Figs. 1f, 2f, g), we 
tested for effects due to off-target photostimulation. We repeated influ-
ence regression, but using the average activity similarity between the 
non-targeted neuron and multiple neurons near the target site. We 
found no significant effects of local activity similarities (Extended Data 
Fig. 7f). Thus, our findings reflect a genuine relationship between an 
individual photostimulated neuron’s characteristics and its influence.

Functional effects on population encoding
Our results so far revealed feature competition based on trial-averaged 
pairwise relationships. However, these analyses did not quantify the 
functional consequence of influence on the brain’s ability to discrimi-
nate stimulus properties such as orientation using population responses 
on single trials. Feature competition led to an unexpected prediction: 
owing to greater suppression between similarly tuned neurons, pho-
tostimulation during a neuron’s preferred orientation should suppress 
the population response and reduce information about orientation in 
non-targeted neurons more than when presenting non-preferred ori-
entations.

We analysed responses in non-targeted neurons to drifting gratings 
in influence measurement blocks. We built decoders to estimate the 
population’s information about orientation during single trials, and 
examined accuracy as a function of similarity between visual stimulus 
orientation and the photostimulated neuron’s preference. Consistent 
with our prediction, we observed a significant decrease in decoding 
performance of around 2% when orientations matched (Fig. 4a).

We then analysed how photostimulation changed population 
encoding of orientation. For each of the four presented orientations, 

we defined a dimension of population activity that helped to isolate 
the change in population activity specific to that orientation. In addi-
tion, we defined a non-selective ‘uniform’ dimension that weighted all 
neurons equally. Single-trial population responses were projected onto 
these dimensions (Fig. 4b–d, Extended Data Fig. 8b; see Methods). 
When the targeted neuron’s preferred orientation was similar to the pre-
sented stimulus, we observed an approximately 2% decrease in activ-
ity along the dimension of the presented orientation (response gain; 
Fig. 4c, e). Activity along the uniform dimension and other encoding 
dimensions was not significantly changed (Fig. 4d–g). In summary, 
suppression was selective for population activity encoding a visual stim-
ulus matching the targeted neuron’s preference, and had physiological 
significance for the brain’s ability to discriminate visual stimuli.

Feature competition can support perceptual inference
One implication of feature competition is the reduction of redundant 
stimulus information in the population, which has benefits for sensory 
codes10,11. We developed a rate-network model to explore this and other 
potential functions, guided by previous studies13,17. The model was 
intentionally simplistic, to elucidate the role of feature competition, and 
does not capture V1 function more generally. Model neurons received 
orientation-tuned feedforward inputs (U) and had recurrent functional 
connections (W) that were similar in effect to influence (Fig. 4h). The 
functional connections were linearly proportional, with constant s, to 
the similarity in the connected neurons’ inputs. We modelled a com-
petition network with a negative relationship between functional con-
nections and input similarity (s < 0) and an ‘untuned’ network (s = 0) 
with the same level of overall inhibition (Extended Data Fig. 9).

Untuned and competition networks responded with a similar bump 
of activity to a single visual stimulus (Fig. 4i). To probe the impact of 
feature competition, we tested responses to stimuli with mixtures of 
different orientations. The competition network demixed feedforward 
inputs into components that closely matched the responses to indi-
vidual inputs (Fig. 4j). By contrast, the untuned network responded 
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Right, activity predictors from the same model. Signal correlation, 
P = 0.0004; signal × distance, P = 0.77; noise correlation, P = 0.0024; 
noise × distance, P = 0.013; signal × noise, P = 0.17; n = 64,485 pairs.  
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P = 0.41, n = 46,634. g, Influence versus noise correlation, for nearby 
(black, n = 8,538) or distant (grey, n = 56,307) pairs. Percentile bins, 20% 
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as a thresholded version of its input (Fig. 4j). Thus, the competition 
network inferred the underlying causes of feedforward input. Owing 
to the negative relationship between recurrent connections and  
tuning similarity in the competition network, the recurrent con-
nections counteracted input drive to each neuron that was better 
explained by another neuron’s activity12,17. For example, in Fig. 4j, 
neurons preferring 60° or 120° were driven strongly by feedforward 
input and inhibited neurons driven by overlap with the 60° and 120° 
stimuli but that preferred different orientations (for example, 90°). 

This effect is the statistical principle known as ‘explaining away’17: 
when an observed phenomena (feedforward input to a neuron pre-
ferring 90°) could be caused by alternative sources (60° + 120° or 
90° stimuli), evidence for one cause typically decreases the likelihood 
of the other (suppression of the 90° cause due to evidence for the 
60° + 120° cause). In the competition network, feedforward input 
was ‘observed’, and neural activity encoded an estimate of the stimulus 
features responsible for the input.

Non-competitive influence
The presence of feature competition on average does not exclude other 
possible structure in the neural population. We looked for structure 
consistent with strong monosynaptic connections between excitatory 
neurons with highly correlated moment-by-moment activity during 
stimulus presentation5 (trace correlation). The distribution of trace cor-
relations was heavily weighted at small values, with pronounced pos-
itive and negative tails (Fig. 5a). Influence was excitatory for the most 
strongly correlated pairs (Fig. 5b). Pairs with high trace correlations had 
high signal and noise correlations, as well as fine-timescale correlations 
not captured by our signal and noise metrics, as expected for neurons 
with diverse locations and phases of receptive fields (Fig. 5c). For all 
other pairs, including even weakly positively correlated pairs, influence 
was inhibitory. The strongest negative influence was between highly 
anti-correlated neurons (Fig. 5b).

Influence had a non-monotonic relationship with trace correlation 
that suggested distinct regimes. The central 95% of trace correlations 
had a negative correlation with influence. For the extrema of the 
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distribution, influence was positively correlated with trace correlation. 
We thus compared the rules governing influence for these two regimes 
by re-fitting our influence regression (Fig. 3d, e) separately for weak 
(central 95% of data) and strong trace correlations (top and bottom 
2.5%; Extended Data Fig. 10). Pairs with weak trace correlations gave 
similar results to those for the entire dataset (Fig. 5d), but for pairs 
with strong trace correlations, influence and signal correlation were 
positively related (Fig. 5d). Thus, although feature competition dom-
inated on average, it was replaced by amplification for the sparse pool 
of highly correlated pairs.

We tested the potential impacts of sparse feature amplification 
between strongly correlated pairs in a network with feature compe-
tition on average. In our competition network model, we incorpo-
rated sparse like-to-like connectivity between neurons with the most  
correlated input (‘mixed’ model). On simulations of single trial 
responses to noisy inputs, this added structure preserved the  
stimulus demixing capacity of the competition motif, and resulted 
in a smoother bump of population activity, the shape of which was 
consistent across trials (Fig. 5e–g). Thus, sparse amplification between 
near-identical neurons in our network model smoothed population 
representations of orientation; additional investigation will be needed 
to fully understand the rules and function of this non-competitive 
influence in the brain.

Discussion
We have shown that adding a few spikes to the activity of a targeted 
neuron had substantial effects on the local population, including mod-
ulations of responses to visual stimuli by around 2% and changes in 
decoding of stimulus properties. These effects included major contri-
butions from inhibition37, including an average inhibitory influence 
between neurons and enhanced competition between similarly tuned 
neurons, forming a like-suppresses-like motif. Feature competition was 
embedded in a complex network structure; however, direct analysis of 
population activity confirmed key predictions of feature competition 
and did not reveal widespread amplification. Feature competition is 
thus an important, but incomplete, account of function in layer 2/3 of 
V1. Further examination in different physiological contexts, and with 
different perturbations, is needed to elaborate this structure.

In support of single-unit recordings in V115,38,39, our results pro-
vide causal evidence that local circuitry in V1 suppresses redundant 
information in a visual scene to create a sparse and efficient code10,11. 
Feature competition is consistent with the principle of ‘explaining away’ 
and may assist with the inference of the visual stimulus properties that 
underlie sensory inputs12,13,17. The computational goal of feature com-
petition generalizes to any sensory system and thus could be a common 
motif of sensory processing40.

Our functional influence results suggest biophysical implications 
for V1 microcircuitry. Because competition varied depending on tun-
ing similarity, inhibition is likely to be more finely structured than is  
generally appreciated4,18,41–43 (but see refs 44–47). Our results are con-
sistent with studies in multiple species, which have shown similar 
tuning of excitatory and inhibitory inputs to individual cells48–50. 
However, the absence of widespread feature amplification suggests 
that the effects of like-to-like excitatory connections in this circuit 
should be reconsidered. We speculate that competition might oper-
ate over small neural pools, rather than on individual neurons, with 
strong intra-pool excitation. However, when multiple visual stimulus 
dimensions are considered, it is rare for two neurons to be similar 
along all dimensions, suggesting that amplification in pools could be 
quite restricted.

Influence mapping has the potential to be a general tool to probe 
computation in local neural populations. It could enable longitudi-
nal studies over timescales of development, behavioural learning, and 
changes in brain state. Furthermore, its causal, functional estimates 
are amenable to direct comparison with network modelling and thus 
could bridge computational and biophysical investigations of cortical 
function.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-019-0997-6.

Received: 9 May 2018; Accepted: 7 February 2019;  
Published online 6 March 2019.

	1.	 Niell, C. M. & Stryker, M. P. Highly selective receptive fields in mouse visual 
cortex. J. Neurosci. 28, 7520–7536 (2008).

	2.	 Lien, A. D. & Scanziani, M. Tuned thalamic excitation is amplified by visual 
cortical circuits. Nat. Neurosci. 16, 1315–1323 (2013).

	3.	 Sun, W., Tan, Z., Mensh, B. D. & Ji, N. Thalamus provides layer 4 of primary 
visual cortex with orientation- and direction-tuned inputs. Nat. Neurosci. 19, 
308–315 (2016).

	4.	 Harris, K. D. & Mrsic-Flogel, T. D. Cortical connectivity and sensory coding. 
Nature 503, 51–58 (2013).

	5.	 Cossell, L. et al. Functional organization of excitatory synaptic strength in 
primary visual cortex. Nature 518, 399–403 (2015).

	6.	 Weliky, M., Kandler, K., Fitzpatrick, D. & Katz, L. C. Patterns of excitation and 
inhibition evoked by horizontal connections in visual cortex share a common 
relationship to orientation columns. Neuron 15, 541–552 (1995).

	7.	 Gilbert, C. D. & Wiesel, T. N. Columnar specificity of intrinsic horizontal and 
corticocortical connections in cat visual cortex. J. Neurosci. 9, 2432–2442 (1989).

	8.	 Ko, H. et al. Functional specificity of local synaptic connections in neocortical 
networks. Nature 473, 87–91 (2011).

	9.	 Lee, W.-C. A. et al. Anatomy and function of an excitatory network in the visual 
cortex. Nature 532, 370–374 (2016).

	10.	 Olshausen, B. A. & Field, D. J. Sparse coding with an overcomplete basis set: a 
strategy employed by V1? Vision Res. 37, 3311–3325 (1997).

	11.	 Olshausen, B. A. & Field, D. J. Sparse coding of sensory inputs. Curr. Opin. 
Neurobiol. 14, 481–487 (2004).

	12.	 Lochmann, T., Ernst, U. A. & Denève, S. Perceptual inference predicts contextual 
modulations of sensory responses. J. Neurosci. 32, 4179–4195 (2012).

	13.	 Lochmann, T. & Deneve, S. Neural processing as causal inference. Curr. Opin. 
Neurobiol. 21, 774–781 (2011).

	14.	 Trott, A. R. & Born, R. T. Input-gain control produces feature-specific surround 
suppression. J. Neurosci. 35, 4973–4982 (2015).

	15.	 Vinje, W. E. & Gallant, J. L. Sparse coding and decorrelation in primary visual 
cortex during natural vision. Science 287, 1273–1276 (2000).

	16.	 Coen-Cagli, R., Kohn, A. & Schwartz, O. Flexible gating of contextual influences 
in natural vision. Nat. Neurosci. 18, 1648–1655 (2015).

	17.	 Moreno-Bote, R. & Drugowitsch, J. Causal inference and explaining away in a 
spiking network. Sci. Rep. 5, 17531 (2015).

	18.	 Bock, D. D. et al. Network anatomy and in vivo physiology of visual cortical 
neurons. Nature 471, 177–182 (2011).

	19.	 Jouhanneau, J.-S., Kremkow, J. & Poulet, J. F. A. Single synaptic inputs drive 
high-precision action potentials in parvalbumin expressing GABA-ergic cortical 
neurons in vivo. Nat. Commun. 9, 1540 (2018).

	20.	 Isaacson, J. S. & Scanziani, M. How inhibition shapes cortical activity. Neuron 
72, 231–243 (2011).

	21.	 London, M., Roth, A., Beeren, L., Häusser, M. & Latham, P. E. Sensitivity to 
perturbations in vivo implies high noise and suggests rate coding in cortex. 
Nature 466, 123–127 (2010).

	22.	 Feldt, S., Bonifazi, P. & Cossart, R. Dissecting functional connectivity of neuronal 
microcircuits: experimental and theoretical insights. Trends Neurosci. 34, 
225–236 (2011).

	23.	 Rickgauer, J. P., Deisseroth, K. & Tank, D. W. Simultaneous cellular-resolution 
optical perturbation and imaging of place cell firing fields. Nat. Neurosci. 17, 
1816–1824 (2014).

	24.	 Packer, A. M., Russell, L. E., Dalgleish, H. W. P. & Häusser, M. Simultaneous 
all-optical manipulation and recording of neural circuit activity with cellular 
resolution in vivo. Nat. Methods 12, 140–146 (2015).

	25.	 Kwan, A. C. & Dan, Y. Dissection of cortical microcircuits by single-neuron 
stimulation in vivo. Curr. Biol. 22, 1459–1467 (2012).

	26.	 Carrillo-Reid, L., Yang, W., Bando, Y., Peterka, D. S. & Yuste, R. Imprinting and 
recalling cortical ensembles. Science 353, 691–694 (2016).

	27.	 Chen, I.-W. et al. Parallel holographic illumination enables sub-millisecond 
two-photon optogenetic activation in mouse visual cortex in vivo. Preprint at 
https://www.biorxiv.org/content/10.1101/250795v1 (2018).

	28.	 Prakash, R. et al. Two-photon optogenetic toolbox for fast inhibition, excitation 
and bistable modulation. Nat. Methods 9, 1171–1179 (2012).

	29.	 Mardinly, A. R. et al. Precise multimodal optical control of neural ensemble 
activity. Nat. Neurosci. 21, 881–893 (2018).

	30.	 Yizhar, O. et al. Neocortical excitation/inhibition balance in information 
processing and social dysfunction. Nature 477, 171–178 (2011).

	31.	 Klapoetke, N. C. et al. Independent optical excitation of distinct neural 
populations. Nat. Methods 11, 338–346 (2014).

	32.	 Wu, C., Ivanova, E., Zhang, Y. & Pan, Z.-H. rAAV-mediated subcellular targeting of 
optogenetic tools in retinal ganglion cells in vivo. PLoS ONE 8, e66332 (2013).

	33.	 Baker, C. A., Elyada, Y. M., Parra, A. & Bolton, M. M. Cellular resolution circuit 
mapping with temporal-focused excitation of soma-targeted channelrhodopsin. 
eLife 5, e14193 (2016).

	34.	 Bonin, V., Histed, M. H., Yurgenson, S. & Reid, R. C. Local diversity and fine-scale 
organization of receptive fields in mouse visual cortex. J. Neurosci. 31, 
18506–18521 (2011).

2 1  M A RC  H  2 0 1 9  |  V O L  5 6 7  |  N A T U RE   |  3 3 9

https://doi.org/10.1038/s41586-019-0997-6


ArticleRESEARCH

	35.	 Rosenbaum, R., Smith, M. A., Kohn, A., Rubin, J. E. & Doiron, B. The spatial 
structure of correlated neuronal variability. Nat. Neurosci. 20, 107–114 (2017).

	36.	 Rickgauer, J. P. & Tank, D. W. Two-photon excitation of channelrhodopsin-2 at 
saturation. Proc. Natl Acad. Sci. USA 106, 15025–15030 (2009).

	37.	 Haider, B., Häusser, M. & Carandini, M. Inhibition dominates sensory responses 
in the awake cortex. Nature 493, 97–100 (2013).

	38.	 Vinje, W. E. & Gallant, J. L. Natural stimulation of the nonclassical receptive field 
increases information transmission efficiency in V1. J. Neurosci. 22, 2904–2915 
(2002).

	39.	 Haider, B. et al. Synaptic and network mechanisms of sparse and reliable visual 
cortical activity during nonclassical receptive field stimulation. Neuron 65, 
107–121 (2010).

	40.	 Koulakov, A. A. & Rinberg, D. Sparse incomplete representations: a potential 
role of olfactory granule cells. Neuron 72, 124–136 (2011).

	41.	 Hofer, S. B. et al. Differential connectivity and response dynamics of excitatory 
and inhibitory neurons in visual cortex. Nat. Neurosci. 14, 1045–1052 (2011).

	42.	 Packer, A. M. & Yuste, R. Dense, unspecific connectivity of neocortical 
parvalbumin-positive interneurons: a canonical microcircuit for inhibition?  
J. Neurosci. 31, 13260–13271 (2011).

	43.	 Kerlin, A. M., Andermann, M. L., Berezovskii, V. K. & Reid, R. C. Broadly tuned 
response properties of diverse inhibitory neuron subtypes in mouse visual 
cortex. Neuron 67, 858–871 (2010).

	44.	 Wilson, N. R., Runyan, C. A., Wang, F. L. & Sur, M. Division and subtraction by 
distinct cortical inhibitory networks in vivo. Nature 488, 343–348 (2012).

	45.	 Yoshimura, Y. & Callaway, E. M. Fine-scale specificity of cortical networks 
depends on inhibitory cell type and connectivity. Nat. Neurosci. 8, 1552–1559 
(2005).

	46.	 Znamenskiy, P. et al. Functional selectivity and specific connectivity of inhibitory 
neurons in primary visual cortex. Preprint at https://www.biorxiv.org/
content/10.1101/294835v2 (2018).

	47.	 Runyan, C. A. et al. Response features of parvalbumin-expressing interneurons 
suggest precise roles for subtypes of inhibition in visual cortex. Neuron 67, 
847–857 (2010).

	48.	 Tan, A. Y. Y., Brown, B. D., Scholl, B., Mohanty, D. & Priebe, N. J. Orientation 
Vselectivity of synaptic input to neurons in mouse and cat primary visual cortex. 
J. Neurosci. 3V1, 12339–12350 (2011).

	49.	 Wehr, M. & Zador, A. M. Balanced inhibition underlies tuning and sharpens 
spike timing in auditory cortex. Nature 426, 442–446 (2003).

	50.	 Anderson, J. S., Carandini, M. & Ferster, D. Orientation tuning of input 
conductance, excitation, and inhibition in cat primary visual cortex.  
J. Neurophysiol. 84, 909–926 (2000).

Acknowledgements We thank J. Drugowitsch, M. Andermann, R. Born,  
O. Mazor, L. Orefice, and members of the Harvey laboratory for discussions;  
H. Nyitrai, L. Bickford, and P. Kaeser for help testing soma localization of 
opsins; and the Research Instrumentation Core and machine shop at Harvard 
Medical School (supported by grant P30 EY012196). This work was supported 
by a Burroughs-Wellcome Fund Career Award at the Scientific Interface, the 
Searle Scholars Program, the New York Stem Cell Foundation, NIH grants from 
the NIMH BRAINS program (R01 MH107620) and NINDS (R01 NS089521, 
R01 NS108410), an Armenise-Harvard Foundation Junior Faculty Grant, and 
an NSF Graduate Research Fellowship.

Reviewer information Nature thanks Adam Packer, Ikuko Smith and the other 
anonymous reviewer(s) for their contribution to the peer review of this work.

Author contributions S.N.C. and C.D.H. conceived the project. S.N.C. built the 
microscope, performed experiments and network modelling, and analysed 
the data, with input from C.D.H. at all stages. S.N.C. and C.D.H. wrote the 
manuscript.

Competing interests The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41586-
019-0997-6.
Supplementary information is available for this paper at https://doi.org/ 
10.1038/s41586-019-0997-6.
Reprints and permissions information is available at http://www.nature.com/
reprints.
Correspondence and requests for materials should be addressed to C.D.H.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019

3 4 0  |  N A T U RE   |  V O L  5 6 7  |  2 1  M A RC  H  2 0 1 9

https://doi.org/10.1038/s41586-019-0997-6
https://doi.org/10.1038/s41586-019-0997-6
https://doi.org/10.1038/s41586-019-0997-6
https://doi.org/10.1038/s41586-019-0997-6
http://www.nature.com/reprints
http://www.nature.com/reprints


Article RESEARCH

Methods
Soma localization. Soma-localized ChrimsonR and C1V1(t/t) plasmids and 
sequence data will be made available on Addgene (currently available upon 
request). Soma-localization was achieved by appending a motif from Kv2.151 after 
the sequence for the fluorescent protein. Construct sequences were synthesized 
by GenScript, and the AAV2/9 virus was prepared by Boston Children’s Hospital 
Viral Core.
Mice and surgeries. All experimental procedures were approved by the Harvard 
Medical School Institutional Animal Care and Use Committee and were performed 
in compliance with the Guide for Animal Care and Use of Laboratory Animals. 
Male C57BL/6J mice were obtained from Jackson Laboratory at ~8 weeks old, 
with surgeries performed 1–16 weeks after arrival. Mice were given an injection 
of dexamethasone (3 µg per g body weight) 4–12 h before the surgery. A cra-
nial window surgery was performed with a 3.5-mm-diameter window centred at  
2.25 mm lateral and 3.1 mm posterior to bregma. The window was constructed 
by bonding two 3.5 mm-diameter coverslips to each other and to an outer 4-mm- 
diameter coverslip (#1 thickness, Warner Instruments) using UV-curable optical  
adhesive (Norland Optics NOA 65). A virus mixture was created by diluting into 
phosphate-buffered saline AAV2/1-synapsin-GCaMP6s52 (obtained from U. 
Penn Vector Core), AAV2/9-CamKIIa-Cre, and one of either channelrhodopsin 
construct AAV2/9-Ef1a-ChrimsonR-mRuby2-Kv2.1 or AAV2/9-Ef1a-C1V1(t/t)- 
mRuby2-Kv2.1. Mixture composition was adjusted slightly over the course of 
experiments, with final and optimal ratios (compared to undiluted stock) of 1/12.5 
GCaMP (~4 × 1012 gc/ml), 1/180 channelrhodopsin (~2.22 × 1011 gc/ml), and 
1/2,100 Cre (~1.33 × 1010 gc/ml). Virus was injected on a 3 × 3 grid of 600 μm 
spacing over the posterior lateral quadrant of the craniotomy, corresponding to 
V1, with ~40 nl injection at each site at 250 μm below the pia surface. Injections 
were made using a glass pipette and custom air-pressure injection system and 
were gradual and continuous over 2–5 min, with the pipette left in place after 
each injection for an additional 2–3 min. After injections and before insertion of 
the glass plug, a durectomy was performed, as we observed improved peak optical 
clarity and a prolonged period of optimal window clarity with this step. An intact 
dura often showed slight increases in thickness and vascularization 1–2 months 
after surgery visible under our surgical microscope. The plug was then sealed 
in place using Metabond (Parkell) mixed with india ink (5% vol/vol) to prevent 
light contamination. Ten mice were used for the primary dataset, which combined 
tuning and influence mapping (six ChrimsonR, four C1V1(t/t)). Three mice with 
C1V1(t/t) opsin were used for experiments mapping photostimulation resolution 
and false-positive influence (Fig. 1e, f); in these mice Cre was diluted to 1/10,000 
(~3 × 109 gc/ml) in order to produce highly sparse channelrhodopsin expression. 
Experiments were performed on mice typically 6–8 weeks after surgery, occasion-
ally as short as 4 or up to 12 weeks. Experiments were terminated when GCaMP 
expression appeared high, with some neurons exhibiting GCaMP in the nucleus.
Microscope design. Data were collected using a custom-built two-photon micro-
scope with two independent scan paths merged through the same Nikon 16× 0.8 
NA water immersion objective. One scan path used a resonant–galvanometric 
mirror pair separated by a scan lens-based relay to achieve fast imaging frame 
acquisitions of 30 Hz. The other path, used for photostimulation, used two galva-
nometric mirrors with an identical relay. The two paths were merged after the scan 
lens–tube lens assembly before the objective via a shortpass dichroic mirror with 
1,000 nm cutoff (Thorlabs DMSP1000L), with small adjustments made to co-align 
pathways by imaging a fluorescent bead sample through both pathways. A light-
tight aluminium box housed collection optics to prevent contamination from visual 
stimuli. Green and red emissions were separated by a dichroic mirror (580 nm 
long-pass, Semrock) and then bandpass filtered (525/50 or 641/75 nm, Semrock) 
before collection by GaAsP photomultiplier tube (Hamamatsu). A Ti:sapphire 
laser (Coherent Chameleon Vision II) was used to deliver pulsed excitation at 
920 nm through the resonant–galvanometric pathway for calcium imaging, and a 
Fidelity-2 fibre laser (Coherent) was used to deliver pulsed excitation at 1,070 nm  
through the galvanometric–galvanometric pathway. A small number of initial 
experiments used a 1,040 nm ytterbium-based solid-state laser (YBIX, Lumentum) 
for the galvanometric–galvanometric pathway. The mouse was head-fixed atop 
a spherical treadmill, as previously described53, which was mounted on an XYZ 
translation stage (Dover Motion) that moved the entire treadmill assembly under-
neath the microscope’s stationary objective. Microscope hardware was controlled 
by Scanimage 2015 (Vidrio Technologies). Rotation of the spherical treadmill along 
all three axes was monitored by a pair of optical sensors (ADNS-9800) embedded 
into the treadmill support communicating with a microcontroller (Teensy, 3.1), 
which converted the four sensor measurements into one pulse-width-modulated 
output channel for each rotational axis.
Visual stimulus. All visual stimuli were generated using Psychtoolbox 3 in 
MATLAB. A 27-inch gaming LCD monitor running at 60 Hz refresh was gamma- 
corrected and used to display all stimuli (ASUS MG279Q). The screen was posi-
tioned so that the closest point on the monitor was 22 cm from the mouse’s right 

eye, such that visual field coverage was 107° in width and 74° in height. Before each 
experiment, coarse retinotopy was mapped out via online observation of imaging 
data using a movable spot stimulus, and monitor position was adjusted so that 
centrally presented spots drove the largest responses in the imaged field-of-view. 
Drifting grating stimuli were different in ‘influence measurement’ and ‘tuning 
measurement’ blocks. Influence measurement blocks used square-wave gratings 
at 10% contrast, 0.04 cycles per degree, and 2 cycles per s, presented for 500 ms 
with 500 ms of grey between presentations (that is, 1 Hz stimulus presentation 
rate). Stimuli discretely tiled direction space with 45° spacing. Tuning measure-
ment blocks used sine-wave gratings presented for 4 s, during which contrast lin-
early increased from 0% to 100% and back to 0%. Grating parameters were each  
sampled from a uniform distribution covering: direction 0–360°, spatial frequency 
0.01–0.16 cycles per degree, and temporal frequency 0.5–4 cycles per s. In a subset 
of experiments (for example, Fig. 3), the range of temporal frequencies was adjusted 
such that a constant range of grating speeds was tested at each spatial frequency 
(with 0.5–4 Hz temporal frequency used for the central spatial frequency of 0.04 
cycles per degree). All grating stimuli were windowed gradually with a Gaussian 
aperture of 44° standard deviation to prevent artefacts at the monitor’s edges. 
Stimuli were presented on a grey background such that the average luminance of 
the monitor was constant throughout all grating presentations and contrasts in the 
experiment. In influence-measurement blocks, a digital trigger was output from 
the computer that controlled the visual stimuli to initiate photostimulation simul-
taneous to the psychtoolbox screen ‘flip’ command. In all blocks, digital triggers 
output from the computer controlling visual stimuli were recorded simultaneous 
to the output of Scanimage’s frame clock for offline alignment.
Experimental protocol. Mice were habituated to handling, the experimental 
apparatus, and visual stimuli for 2–4 days before data collection began. A field of 
view (FOV) was selected for an experiment based on co-expression of GCaMP6s 
and channelrhodopsin. The 920 nm excitation used for GCaMP6s imaging was 
between 40 and 60 mW (average with pockels cell blanking at image edges, meas-
ured after the objective). Multiple experiments performed in the same animal were 
performed at different lateral locations within V1 or at different depths within 
layer 2/3 (110–250 μm from brain surface). Once a FOV was selected, images were 
acquired from both laser paths. The 920 nm-excitation resonant pathway image 
(~680 × 680 μm) was stored and used throughout the experiment to correct for 
brain drift during the experiment (described below). The 1,070 nm excitation 
photostimulation galvanometric pathway image (~550 × 550 μm) was used to 
visualize channelrhodopsin expression and select regions of interest (ROIs) for 
photostimulation (parameters described below). Experiments began with a tuning- 
measurement block of ~40 min, followed by three photostimulation blocks of  
50 min each, and finally a second tuning-measurement block of ~40 min. Within 
each photostimulation block, each photostimulation target was activated once in 
a randomized permutation at 1 Hz, and this process was then repeated throughout 
the block, such that all targets in an experiment were activated in near-random 
order with exactly the same number of repeats. The total number of photostimu-
lation trials per experiment was typically ~8,400, split into ~180 per site.

We found that, over these long experimental durations, deformation of the brain 
and/or air bubble formation in the objective immersion fluid could lead to con-
tamination of data. Thus between each experimental block, we used the alignment 
image captured before any experiment blocks and overlaid this image with a live-
stream of the current FOV and adjusted the stage as necessary to bring the two into 
alignment. This alignment usually required shifts of <10 μm laterally and axially 
over the full experiment duration, and was typically no more than 3 μm between 
individual blocks. We also found that boiling the water used for objective immer-
sion to remove dissolved gas (cooling to room temperature before use) prevented 
formation of bubbles. Post-hoc verification of drift and image quality stability were 
confirmed by examining 1,000× sped-up movies of the entire experiment after 
motion correction and temporal down-sampling. Insufficiently stable experiments 
were discarded without further analysis. In addition, single-neuron stimulation 
was observed and subjectively judged online, so that experiments with generally 
poor stimulation efficacy were excluded from further analysis. All inclusion and 
exclusion decisions were made before data analysis, and after all experiments had 
been performed, and were not altered once analysis began.

The complete dataset consisted of 28 experiments from 10 mice, with 295 con-
trol photostimulation sites and 539 neuron photostimulation sites, 518 of which 
were significantly photostimulated. A total of 8,552 neurons were recorded, of 
which 6,061 passed criteria for GP regression fit quality (see below). This resulted 
in 156,759 pairs of neuron photostimulation and non-targeted neuron responses, 
from which 1,440 were excluded by our 25 μm distance threshold, and 1,630 were 
excluded by spatial overlap (see below on constrained non-negative matrix fac-
torization (CNMF) filter overlap). This left 153,689 pairs for analysis, of which 
64,845 further passed criteria for GP regression fit quality for both targeted and 
non-targeted neurons. All data from experiments were managed and analysed 
using a custom built pipeline in the DataJoint framework54 for MATLAB.
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Photostimulation. Our photostimulation protocol was a modification of a ‘spiral 
scan’ approach36. After selecting areas for stimulation, we initialized a circular 
target around each area that was slightly broader than the targeted neuron in order 
to account for brain motion in vivo (12–15 μm diameter). We used the microscope’s 
galvanometric–galvanometric pathway to rapidly sweep a diffraction-limited spot 
across the cross-sectional area of a photostimulation target. This area was covered 
uniformly in time using a sweep trajectory that combined a 1-kHz circular rotation 
of the spot around the photostimulation target with an irrational frequency oscil-
lation of the spot’s displacement magnitude from target centre ( π/ −( )1 2 2

3
 kHz), 

which was found to rapidly fill the circular cross-section (Extended Data Fig. 1b). 
The oscillation of displacement magnitude was a sawtooth wave modified with a 
square root transform to spend greater time at greater displacements, to account 
for the increasing circular area at larger displacement. A single sweep trajectory 
was set to 32 ms in duration. Photostimulation consisted of a 15 Hz train of four 
sweeps, with sweep onset aligned to the onset of imaging frames. Power was typ-
ically ~50 mW (measured without pockels blanking, after the objective), but was 
increased in some experiments if stimulation efficacy was observed to be low (min 
36 mW, max 67.5 mW, mean 52.7 mW).
Cell-attached recordings. Two mice were injected with virus using the same pro-
tocols used for experimental animals. Between four and eight weeks after injection, 
the cranial window was removed and replaced with a 3-mm glass window laser 
with a 0.5-mm diameter access hole. This custom window was laser cut from a 
sheet of quartz glass. Two-photon targeted recordings55 were obtained using boro-
silicate glass pipettes pulled to a resistance of 5–7 MΩ and filled with extracellular 
solution. Signals were amplified on a Axopatch 200B (Molecular Devices), filtered 
with a lowpass bessel filter with cutoff at 5 kHz, and recorded at 10 kHz. Signals 
were later high-pass filtered offline and a manual threshold was used to identify 
spike times. Photostimulation was performed using the same protocol used in all 
experiments (described above, 45 mW power, 1,070 nm excitation). Spikes added 
by photostimulation were calculated as the average number of spikes observed 
0–250 ms after photostimulation onset, minus one-quarter of the average spikes 
observed in the 1,000 ms preceding photostimulation. No recorded neurons exhib-
ited changes in spiking activity more than 250 ms after photostimulation onset.
Pre-processing of imaging data. Imaging data were processed offline using 
custom MATLAB code described below. Code is available online: https://github.
com/HarveyLab/Acquisition2P_class for motion correction, https://github.com/
Selmaan/NMF-Source-Extraction for source extraction.

Motion correction was implemented as a sum of shifts on three distinct tempo-
ral scales: sub-frame, full-frame, and minutes- to hour-long warping. First, sequen-
tial batches of 1,000 frames were corrected for rigid translation using a subpixel 
phase correlation method56. Then, rigidly corrected imaging frames were corrected 
for non-rigid image deformation on sub-frame timescales using a Lucas–Kanade 
method57. To correct for non-rigid deformation on long (minutes to hours) times-
cales, a reference image was computed as the average of each 1,000-frame batch 
after correction, one being selected as a global reference for the alignment of all 
other batches. This alignment was fit using a rigid 2D translation as above, followed 
by an affine transform after the rigid shift (imregtform in MATLAB), followed 
by a nonlinear warping (imregdemons in MATLAB). We found that estimating 
alignment in this iterative way gave much more accurate and consistent results than 
attempting nonlinear alignment estimation in one step. However interpolating 
data multiple times can degrade quality, and so all image deformations (including 
sub- and full-frame shifts within batches) were converted to a pixel-displacement 
format and summed together to create a single composite shift for each pixel for 
each imaging frame. Raw data were then interpolated once using bi-cubic inter-
polation (interp2 in MATLAB).

Because single experiments were much too large to load into a conventional 
computer’s memory (~250 GB per experiment), frames were temporally binned 
by a factor of 25 (from 30 Hz to 1.2 Hz) after motion correction but before source 
extraction. GCaMP6s transients were still easily resolved, and previous work has 
suggested that source extraction is improved by temporal down-sampling58. The 
CNMF framework59,60 was then used to identify spatial footprints for all sources 
using the down-sampled data. Some modifications were made to the publicly dis-
tributed implementation. First, because the approximation of imaging noise needed 
for CNMF is biased at low temporal frequencies in which imaging noise and signal 
are not temporally separable, we used full-resolution data to approximate pixel 
noise and divided this value by the square-root of the down-sampling factor. We 
also used three unregularized (‘background’) components (default is one), because 
we observed that the spatial footprints of neuropil activity were distinct from the 
true ‘background’ fluorescence of baseline GCaMP6s brightness. An initial rank-
one background component was temporally filtered (1,000-frame median filter) 
such that all high-frequency fluctuations were isolated into one component. The 
remaining low-frequency component was then split between two components that 
linearly ramped up from or down to zero over the duration of the experiment, to 

account for slight background changes over hours. Spatial and temporal profiles for 
each component were then estimated ordinarily on all subsequent CNMF iterations 
after this initialization procedure.

We further modified the initialization method used by CNMF in order to model 
sources independent of their spatial profile (that is, neural processes as well as cell 
bodies), using a normalized cuts-based procedure similar to that used in previous 
work61, which clusters pixels into maximally similar groups based on temporal 
activity correlations. As usual for CNMF, our initialization operated on overlapping 
square sub-regions of the FOV (~70 μm, 52 pixel edge length, 6 pixel overlap). We 
then calculated the correlation coefficient of all pixel pairs (i, j) in this sub-region 
over all time points in the down-sampled data, and used these values to construct 
a graph with edge weight = −

σ
−( )W i j( , ) exp i j1 corr( , ) . The parameter σ was set 

to median(1 − C), where C is the correlation coefficients for all pixel pairs in the 
subregion. We obtained a clustering of the resulting graph using a non-negative 
factorization as described62. These initial source estimates were then further 
refined via initialization of a spatially sparse NMF decomposition of the down-sam-
pled subregion data, and merging of any ‘over split’ components (when projections 
of data, after removal of background component, onto two source masks had tem-
poral correlation coefficients greater than 0.9). The resulting sources were then 
used as initializations for all future iterations of the core CNMF algorithm. After 
running CNMF for three iterations on temporally down-sampled data, the result-
ing spatial footprints were used to extract activity traces for each source from the 
full temporal resolution data. Fluorescence traces of each source were then decon-
volved using the constrained AR-1 OASIS method63; decay constants were initial-
ized at 1 s and then optimized for each source separately. ΔF/F traces were obtained 
by dividing CNMF traces by the average pixel intensity in the movie in the absence 
of neural activity (that is, the sum of background components and the baseline 
fluorescence identified from deconvolution of a source’s CNMF trace). 
Deconvolved activity was also rescaled by this factor, in order to obtain units of 
ΔF/F.

Because our implementation of CNMF resulted in non-cell-body fluores-
cence sources being modelled, we trained a two-layer convolutional network in 
MATLAB using manually annotated labels to identify whether each fluorescence 
source was one of: (i) a cell body, (ii) an axially oriented neural process appear-
ing as a bright spot, (iii) a horizontally oriented neural process appearing as an 
extended branch, or (iv) an unclassified source or imaging artefact. The network 
operated on source-centred windows that were 25 × 25 pixels wide (at ~1.2 μm/
pixel), and consisted of ReLU units with two convolutional layers (thirty-two 
18 × 18 × 1 filters followed by three 5 × 5 × 32 filters), a 256-unit fully connected 
layer, and a 4-unit softmax output. Only sources identified as cell bodies were 
used in this paper, although we note that neural processes frequently revealed 
quite similar signals in terms of quality and encoding properties. However the 
inclusion of non-cell-body sources in CNMF for this project was intended only to 
reduce contamination of cellular fluorescence signals. The network was trained on 
8,700 sources which were further augmented 30-fold by rescaling, rotation, and 
reflection. There is no ground-truth accuracy to compare with, but agreement 
with human annotation on held-out datasets ranged from 80–90%, which was 
qualitatively similar to human variability. We provide example predictions of this 
network on a held-out mouse and session compared to typical human annotation 
in Extended Data Fig. 1h.

For analysis of traces without neuropil subtraction, we projected imaging data 
onto the spatial filters obtained by CNMF (that is, without any demixing or sub-
traction), analogous to averaging pixel intensities for each ROI, to obtain fluo-
rescence traces for each neuron. All subsequent processing stages were handled 
identically to the ‘demixed’ fluorescence traces.
Photostimulation-specific pre-processing. A number of additional pre-process-
ing steps were introduced for specific purposes related to photostimulation. For 
each photostimulation target, we calculated a photostimulation-triggered average 
(PTA) image for the entire FOV of fluorescence changes for 50 frames after versus 
before photostimulation of that target (Extended Data Fig. 1c). This PTA was then 
used at a number of stages of the processing pipeline. First, when initializing source 
extraction from imaging data using the algorithm described above, we added the 
largest connected component from PTAs to assist the algorithm’s detection of 
photostimulated neurons. Second, we used PTAs for post-hoc confirmation of 
matches between cellular sources identified by CNMF and photostimulation tar-
gets. Specifically, we manually examined all sources identified near the location 
of each photostimulation target, and overlaid these with the PTA image for that 
target, as well as plotting the PTA trace of each source’s activity. This was neces-
sary because axial blurring of in vivo two-photon calcium imaging data can lead 
to fluorescence signals from distinct cells with partial lateral overlap. Whenever 
we did not observe an unambiguous pairing of source and intended target, we 
labelled a target as ‘unmatched’ (418 photostimulation sites), and excluded it from 
further analysis. Finally we observed that, owing to imperfect axial resolution, the 
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processes of a stimulated neuron, as identified in a PTA image, could sometimes 
overlap with the spatial footprint of other cellular sources. This overlap could lead 
to an erroneous measurement of influence between the pair, if the photostimulated 
neuron’s activity was not properly demixed by CNMF and so contaminated the 
activity trace of the other neuron. We note that this issue is a generic property of 
in vivo two-photon calcium imaging, and not specific to influence mapping or 
photostimulation per se. Given the limitations of current algorithms for demix-
ing, we directly estimated the spatial overlap of each cell’s spatial profile (as used 
in CNMF) with each photostimulated target’s processes (taken to be the largest 
connected component in a binarized PTA) and excluded from analysis any pairs 
with detected overlap. This affected pairs generally <100 μm apart, and had no 
qualitative impact on results, although quantitatively the relationship between 
influence and distance (Fig. 2f, g) exhibited a more pronounced excitatory centre 
without removing overlapping pairs.

Photostimulation causes a minor artefact by directly exciting GCaMP6s or 
from autofluorescence, causing calcium imaging data collected simultaneously to 
be biased in a photostimulation-target-specific manner. Though this artefact was 
small with 1,070 nm photostimulation, it became quite noticeable when hundreds 
of trials were averaged. Thus, we leveraged the fact that our photostimulation 
protocol consisted of pulses aligned to imaging frame onsets, and pulses were sub-
frame-length, and replaced original data from single frames containing a photo-
stimulation artefact with linearly interpolated values from the frames immediately 
before and after. This interpolation was performed on all source’s activity traces, 
before deconvolution.
Gratings and photostimulation response magnitude. The magnitude of response 
to optimal visual stimuli during tuning blocks was measured with a model-free 
approach, which did not assume any particular tuning structure or contrast sen-
sitivity. We measured the difference between the 99th and 1st percentiles of each 
neuron’s ΔF/F trace over each 4-s-long trial during tuning measurement blocks, 
and then quantified grating response magnitude as the 95% percentile of this dis-
tribution over all trials. For this analysis only, the ΔF/F trace of each neuron for 
the entire tuning measurement blocks was smoothed with a Savitzky–Golay filter 
of order five and frame-length 2 s (using MATLAB sgolayfilt) to reduce the impact 
of imaging noise on this measure.

Photostimulation response magnitude was estimated as average ΔF/F for 300–
600 ms following photostimulation minus ΔF/F 500 to 100 ms before photostim-
ulation. We observed no differences between photostimulation magnitudes when 
using C1V1 or ChrimsonR (0.61 vs 0.6 ΔF/F, P = 0.304, n = 283 C1V1 neurons, 
235 ChrimsonR neurons, Mann–Whitney U-test).
Influence measurement. We used two complementary metrics to quantify influ-
ence. For both approaches, single-trial responses for each neuron were computed 
as the average value of deconvolved traces over 11 imaging frames (367 ms) begin-
ning with the onset of photostimulation (Activityi,n for neuron n on trial i). Our 
first metric computed the difference between single trial and average control trial 
activity:

Δ = − < >Activity Activity Activityi n i n j n j, , ,

where trials j corresponds to all control site photostimulation trials with the same 
visual stimulus as presented on trial i (and excluding all trials where any site within 
25 μm was photostimulated). We then normalized ΔActivityi,n by dividing by the 
standard deviation over all trials i. This was important because it is difficult to 
determine absolute levels of spiking activity from calcium imaging data. The nor-
malization ensured that we measured effects relative to each neuron’s variability, 
and furthermore that results would not be improperly influenced by misestima-
tion of absolute activity levels in some neurons. Influence values for an individual 
photostimulation target were then computed as the average ΔActivityi,n over all 
trials in which that target was photostimulated. For analysis of influence from 
control site photostimulation we used a leave-one-out procedure, where a single 
control site was excluded from trials j used to calculate expected activity and 
influence values for that site were obtained as above, and we obtained influence 
values for all control sites by repeating this procedure for each control site in an 
experiment.

Our second influence metric converted the data into a probabilistic framework 
using a non-parametric shuffle procedure, which controls for the asymmetric and 
heavy-tailed distributions of single-trial neural activity. This metric was used to 
confirm the results of the simpler metric above, and was further used to identify 
‘significant’ influence values (Extended Data Fig. 3a–c). We began by computing 
single-trial residuals as described above (that is, ΔActivityi,n). Average photo-
stimulation responses to individual targets were then computed over all trials and 
compared to 100,000 averages computed by random permutations of trial num-
ber and photostimulation target, and excluding any trials with photostimulation 
of a target within 25 μm of a cell (‘shuffle distribution’). Our second metric was 
computed as the log-odds ratio that the average response of non-targeted neuron 

n to photostimulation of targeted neuron t (ΔActivityt,n) was greater-than versus 
less-than the shuffle distribution:
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InfOddst,n was capped at ±5 because we used a finite number of shuffles (this 
occurred for 57 out of 64,845 pairs in the primary dataset).

We used InfOddst,n to determine the significance of influence values for indi-
vidual pairs, against the null hypothesis of random sampling of activity (Extended 
Data Fig. 3a–c). We performed independent tests for whether a neuron’s activity 
was increased or decreased relative to random sampling. These values were then 
used to determine a P value threshold using the positive false discovery rate pro-
cedure64, as implemented in MATLAB’s function mafdr. We set P value thresholds 
corresponding to false discovery rates of 5% and 25% (respectively, 0.15% and 
0.42% of all pairs passed these thresholds).

We also computed an influence measure ΔFluorescence that could be computed 
directly from a neuron’s fluorescence traces without deconvolution, or in some 
cases without neuropil subtraction. ΔFluorescence was computed as for ΔActivity, 
except a vector of time points aligned to photostimulation onset was used instead 
of a single scalar value of single-trial activity. ΔFluorescence was normalized as for 
ΔActivity, using the standard deviation of fluorescence values averaged 300–600 
ms after photostimulation onset.

Note that we use the phrase ‘non-targeted neuron’ throughout the text with 
respect to the specific subset of trials on which another neuron was targeted. That 
is, a ‘non-targeted neuron’ on some trials could be a ‘targeted’ neuron on other 
trials (and vice versa).
Gaussian process tuning model. Our tuning measurement protocol sampled 
responses over a broad range of stimulus parameters, however it results in no 
repeats of exactly identical stimuli. This improves our sampling efficiency com-
pared to repeating an identical stimulus multiple times, but complicates analy-
sis. We thus needed a method to interpolate between highly similar trials. GP 
regression is a principled, probabilistic approach to both determine smoothing 
parameters and perform this interpolation. The use of a GP, as opposed to a con-
ventional regression with basis function expansion, enabled us to specify high-level 
properties of neural tuning without assuming any particular parametric form of the 
tuning function, and to reason probabilistically about uncertainties in estimating 
the latent tuning.

Single-trial responses of individual neurons during the tuning-measurement 
block were computed by averaging deconvolved activity over 112 frames of visual 
stimulus presentation (~4 s, excluding the first and last four frames within a con-
trast cycle), then taking the square-root transform in order to stabilize response 
variability across the range of average response magnitudes65. These responses 
were considered as noisy observations of a 4D latent function f(x) with dimensions 
of: grating drift direction, grating spatial frequency, grating temporal frequency, 
and the mouse’s running speed (which is known to modulate responses in V1). 
This latent function defines the tuning of an individual neuron, and was fit using a 
Bayesian non-parametric Gaussian process regression model built using the GPML 
toolbox 4.066 in MATLAB.

The model is specified by the form and hyperparameters of a covariance func-
tion K(x,x′), which determines smoothness by specifying the similarity of function 
values between any two points in the 4D tuning space. We chose the commonly 
used squared-exponential covariance:

σ′ = − − ′ − ′−x x x x P x xK ( , ) exp( ( ) ( ))T 1
c
2

The hyperparameters here include σc
2 as the scale of the covariance function, and 

P as a diagonal matrix with entries λ λ…, ,1
2

4
2 defining an independent length scale 

for each dimension. Shorter distances correspond to functions that are sharply 
‘tuned’ to particular dimensions. Note that distances for grating drift direction 
were calculated after projection into the complex plane. We then used a Gaussian 
likelihood function with hyperparameter σn

2 as the level of response variability, 
such that any number of finite samples of the latent function f and noisy observa-
tions y at locations X have joint Gaussian distributions:

N~f X K(0, )

σN~y f f( , )n
2

where K is a matrix specifying the covariance between all samples. Thus by con-
ditioning on a set of observed data points (the ‘training set’), we obtain a posterior 
distribution over function values at any set of unobserved locations, either held-out 
data points (the ‘test set’) or untested locations66. All hyperparameters were opti-
mized by maximizing the marginal likelihood of the data p(y|X) = ∫p(y|f)p(f|X)df, 
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as ordinary for a Gaussian process model. This procedure is a Bayesian alternative 
to regularization that does not require cross-validation.

We divided each neuron’s responses (~1,000 trials) into 20 parts, and predicted 
responses for each part using ‘training’ data from the other 19 parts. These ‘test’ 
predictions were then correlated with actual data as a metric for model accuracy. 
We also compared accuracy when predictions were made on ‘test’ versus ‘training’ 
data as a metric for model over-fitting, which was generally quite low (Extended 
Data Fig. 4b). Test predictions from the model were then used to calculate single- 
trial residuals. Pearson’s linear correlation coefficient was computed between test 
predictions of two neurons to determine signal correlation, and between resid-
uals to determine noise correlation. Because our separation of signal and noise 
correlation was model-based, all analysis involving either or both quantities 
needed to exclude from consideration any neurons with inaccurate models. To 
pass inclusion criteria, both the photostimulation targeted neuron’s model and 
the non-targeted neuron’s model had to have model accuracies, defined as the 
Pearson correlation between predicted and actual responses, above 0.4 as well as 
a difference between train and test accuracies of <0.15 (to exclude possible over- 
fitting). Analysis of neuron versus control influence, distance, and trace correlation 
relationships (Figs. 2, 5b) did not apply these criteria because signal and noise were 
not considered, but results for both were similar when analysing the subset of data 
which passed tuning criteria.

The GP model fits neural responses with a nonlinear 4D tuning function, which 
is not necessarily separable by dimension. To extract 1D tuning curves, we thus 
employed the canonical neurophysiological approach of studying tuning to a stim-
ulus that optimally drives a neuron. In other words, we examined spatial frequency 
tuning at the drift direction, temporal frequency, and running speed that best 
activated a neuron, as determined by the GP model, and so on for all individual 
dimensions. Specifically, we identified the location x where latent response f was 
maximal, by starting from the location of the maximal single-trial prediction and 
then performing a grid-search over all nearby locations in four dimensions. Given 
this location, we then fixed three dimensions and varied a fourth to obtain a tuning 
curve. We further used these tuning curves to determine whether each neuron was 
significantly tuned to each tuning dimension by calculating a depth of modulation 
(domd) as follows:

σ σ
=

−

+

t tdom max( ) min( )

( )
d

d d

t tmax( )
2

min( )
2

d d

where td is a neuron’s tuning curve for the dth dimension, and σ tmax( )
2

d
, σ tmin( )

2
d

 are 
the variance of the posterior distribution at the locations of the maximum and 
minimum tuning values, respectively. Neurons were considered tuned to dimen-
sion d when domd > 2, corresponding to statistically significant evidence for tun-
ing modulation along this dimension, and analysis was restricted to these neurons 
whenever tuning along individual dimensions was considered (Figs. 3f, i, 4). 
Preferred stimulus values were also extracted from 1D tuning curves. Fractions of 
tuned neurons for each dimension, tuning curves, and depth-of-modulation values 
are presented in Extended Data Fig. 4.
Comparison of GP and conventional tuning model. We adapted a recent para-
metric tuning model46 to compare with the GP model described above. This model 
approximated single-trial neural responses during tuning measurement blocks, as 
analysed above for the GP model, as a product of 1D Gaussian tuning curves to 
each stimulus dimension (drift direction, spatial frequency, temporal frequency, 
and running speed). Tuning to drift direction was a sum of two Gaussians, sepa-
rated by 180°, with a scaling parameter r which adjusted the relative strength of the 
two Gaussians to account for directional preference. All other tunings were single 
Gaussians, with a parameter for centre and width, and the model included an addi-
tional additive response offset. All parameters were optimized using MATLAB’s 
lsqnonlin.

To compare model accuracies, we used all neurons from a single experiment, 
and divided trials into 10 cross-validation folds. All parameters for both GP and 
parametric tuning models were fit to 90% of the data and used to predict responses 
on held-out trials. Model accuracy was quantified as the Pearson correlation coef-
ficient between predicted and actual data.
Correlations used as similarity metrics. Four correlation types were used in this 
study. (1) ‘Trace correlation’ was defined as the Pearson’s linear correlation of two 
neurons’ deconvolved activity throughout tuning measurement blocks, after down-
sampling from 30 Hz to 3 Hz to reduce the influence of noise and imaging artefacts. 
We considered this analogous to what has been termed ‘total’ or ‘response corre-
lation’ in the literature5. (2) ‘Signal correlation’ was defined as the Pearson’s linear 
correlation of GP model single-trial predictions on held-out data (using 20-fold 
cross-validation to form predictions for all trials). We considered this analogous 
to signal correlations computed on average responses to a discrete set of stimuli, 
because the GP model predictions are the mean response inferred by interpolating 
between trials with similar stimulus parameters. (3) ‘Noise correlation’ was defined 

as the Pearson’s linear correlation of residuals between a neuron’s actual single-trial 
responses and GP model predictions (using the same procedure on held-out data as 
above). We considered this analogous to noise correlations computed as residuals 
of average responses to a discrete set of stimuli by the same logic as for signal cor-
relations. (4) ‘Response correlation’ was defined as the Pearson’s linear correlation 
of the single-trial neural responses to which GP models were fit. This is similar to 
trace correlation, but averages over 4-s periods, and is aligned to visual stimulus 
presentation. Single-trial correlation was used only for visualization purposes in 
Extended Data Fig. 6e, f.
Analysis of influence values. Influence resulting from photostimulation of neuron 
sites was analysed only for targets where we could confirm effective stimulation 
(average response >5 s.d. greater than expected in shuffled distribution described 
above; Extended Data Fig. 1e). We used two analysis procedures: a 1D running 
average (for example, Fig. 3g–i), and multiple linear regression (for example, 
Fig. 3d–f). For running average analyses, we chose centre locations to span the 
full range of observed values and a manually specified bin width. Bin parameters 
were specified in percentile space for signal and noise correlations, and in real space 
for distance and trace correlation analysis to better sample the sparse tails of these 
distributions, as described in figure legends for each plot. For all plots, x values 
were the mean value of the smoothed variable (for example, distance) within a bin, 
which typically deviates slightly from the nominal bin centre. We estimated stand-
ard errors for each bin by bootstrap resampling. Because this analysis introduces 
arbitrary parameters that could affect results, we considered smoothing analyses 
as qualitative and exploratory. All statistical claims were thus verified by analysis 
of correlation coefficients or the regression procedure described below.

Multiple linear regression was used to estimate the relationship between sim-
ilarity metrics (distance and signal, noise, and trace correlations) and influence 
values. We constructed a design matrix whose columns included piece-wise linear 
terms for distance (<100 μm, 100–300 μm, and >300 μm segments), linear terms 
for signal and noise correlations and their interaction, and linear interactions for 
both signal and noise correlation with log-transformed distance. Each distance 
segment included terms for both offset and slope. All predictors were z-scored to 
facilitate comparison of coefficient magnitudes. We then resampled our data points 
10,000 times and estimated regression coefficients for each. Median coefficients, 
confidence intervals, and P values were obtained from this bootstrap distribution as 
described below. For the tuning-components regression in Fig. 3f, we constructed 
five alternate regression models, in which signal correlation and its interactions 
were replaced by tuning curve correlations for one of the five tuning features. For 
each feature, data were restricted to the subset of pairs for which both the photo-
stimulated target neuron and non-targeted neuron exhibited significant tuning 
(see above). Because our model predicted grating drift direction over 360°, we 
obtained orientation-specific tuning curves by averaging tuning curves across both 
directions for each orientation, and direction-specific tuning curves by taking the 
difference across both directions for each orientation.

For model prediction plots of Extended Data Fig. 6c–f, data were first smoothed 
as described above. Then we used the influence regression model above to predict 
influence values for each data point, using either the full model or a subset of 
coefficients. The interaction term of signal or noise correlations with distance 
were considered a part of the ‘signal’ and ‘noise’ component, respectively, of the 
model for these plots. These predicted values were then smoothed identically to 
the data. Note that predictions thus appear nonlinear, despite a linear prediction 
model, because of complex interdependencies between the distributions of signal 
correlation, noise correlation, and distance.

For analysis of influence directly on ΔF/F traces in Extended Data Fig. 7, we fit 
influence regression models for each frame of ΔFluorescence values, obtaining a 
temporal vector of influence regression coefficients for each predictor. This analysis 
was otherwise identical to the regression analysis of ΔActivity.
‘Nearby neuron’ analysis. We designed this analysis to confirm that influence 
effects were specific to the relationship of non-targeted neurons and the precise 
identity of a photostimulated neuron (Extended Data Fig. 7f). To accomplish this, 
for each photostimulation site we identified the closest 2.5% of all neurons to 
the photostimulation site (typically ~10–30 μm away), and averaged their signal 
and noise correlations with individual non-targeted neurons. This captures any 
spatially broad similarities in tuning shared by neurons near the targeted neuron. 
The influence from this photostimulation site was then analysed using the influ-
ence regression model described above, using this locally averaged similarity of 
each non-targeted neuron to neurons near the photostimulation site (including all 
criteria mentioned above). This procedure scrambled the relationship between a 
photostimulated neuron’s activity and influence, except for properties which vary 
smoothly in space and thus would be shared by accidentally activated, non-tar-
geted neurons (either laterally or axially). However, distances and the statistical 
structure of our data (for example, correlations between similarity metrics) were 
unaltered. Thus, effects related to the precise tuning of individual neuron tar-
gets, but not those caused by low-resolution photostimulation of a small volume, 
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were disrupted by this procedure. We present results of this analysis (Extended  
Data Fig. 7f) applied to neuron photostimulation data analysed throughout this 
manuscript. We also performed this analysis for all photostimulation sites (includ-
ing unmatched and control photostimulation sites, where we could not verify neu-
ronal activation) and obtained similar results (data not shown).
Decoding analysis. For decoding and population projection (below) analyses, 
we analysed trials from ‘influence mapping’ blocks on which orientation-tuned 
neuron targets were photostimulated. For each neuron targeted for photostimula-
tion, orientation-tuning significance and preference were determined as detailed 
above, using the GP model and data exclusively from the ‘tuning measurement’ 
experimental blocks. We used a naive Bayes decoder to predict which of the four 
orientations of gratings were presented on single trials in influence mapping blocks. 
The decoder makes the approximation:

∣ ∣∏ ∏≈ =rP P r P r P
P r

(ori ) (ori ) ( ori) (ori)
( )i

i
i

i

i

where r is a vector whose entries ri are neural responses from the ith neuron on a 
single trial. Thus this decoder is suboptimal because it ignores noise correlations 
between neurons. Because we were interested in predicting the best grating orien-
tation on each trial, we ignored the term in the denominator, and because all ori-
entations were equally likely to be presented, we ignored P(ori) in the numerator, 
resulting in the following function for prediction of single trial orientation or̂i:

∣∏= P ror̂i argmax ( ori)
i

i
ori

which is a simple maximum likelihood predictor. We estimated P(ri|ori) non- 
parametrically, as many neurons had a response of precisely zero on a large fraction 
of trials, which severely limited accuracy when a parametric, exponential family 
distribution was used as the likelihood model. Specifically, non-zero responses 
across all trials were discretized to be in one of four equal-width percentile bins, 
and P(ri,ori) was calculated directly for the percentile and zero bins. To prevent our 
decoder from fitting to the effects of photostimulation, we used a leave-one-out 
procedure in which all trials for a single photostimulation target were predicted 
using a model with these data excluded from model fitting. Additionally, all pho-
tostimulated neurons were excluded from the decoder, so that decoder accuracy 
was not trivially altered by excluding different neurons for different photostim-
ulation targets.

Precise levels of decoding accuracy were variable from experiment to experi-
ment, depending on the number and tuning of imaged cells as well as overall signal 
quality. Furthermore, cardinal orientations tended to be slightly over-represented 
in neural tuning (Extended Data Fig. 4d) and thus easier to predict than oblique 
orientations. This is of note because the tuning bias also causes different grating 
orientations to be more or less likely to be matched to the tuning preferences of 
photostimulated neurons. To control for these factors when analysing combined 
data, we used a generalized linear mixed-effects model for logistic regression. 
Mixed-effects models enable estimation of ‘fixed’ effects (as in conventional 
regression) in the presence of confounding ‘random’ effects caused by variation 
attributable to various groupings. In our application, the angular difference of 
presented grating and photostimulated neuron’s preferred orientations (‘orientation 
misalignment’) was a fixed effect, and both experiment ID and grating orientation 
were random effects. We modelled single-trial accuracy of the decoder as:

  ~ Pacc Bernoulli( )

β


 −



 = +X ZbP

P
log

1

σN~b I(0, )ID id
2

σN~b I(0, )ori ori
2

where Xβ are the design matrix and coefficients for fixed effects, and Zb are the 
same for random effects, and random effects terms for each experimental ID (bID) 
and grating orientation (bori) have independent Gaussian priors with variance fit 
to the data. For plots in Fig. 4, we fit two model variants: one in which orientation 
misalignment was divided into five equally spaced, discrete bins; a second in which 
misalignment was treated as a single continuous value. The model was fit and  
P values were estimated in MATLAB using the glme class.
Population-projections analysis. We decomposed single-trial population 
responses during influence-measurement blocks into projections along five axes: 
one each corresponding to the average response to each grating orientation, and 
a fifth ‘uniform’ projection that simply averaged the response of all neurons. In 

contrast to previous analyses, to define a population projection, it was necessary 
to separate out neurons with a large increase in activity in response to gratings 
from neurons with a high, tonic level of activity. Thus the activity of each neuron 
across all trials was normalized by calculating pre-trial activity (~467–100 ms 
before gratings onset), subtracting this value from single trial responses (0–367 ms 
after gratings onset), and dividing the result by the standard deviation of pre-trial 
responses (that is, single trial responses were z-scored relative to pre-trial activity). 
We then computed response directions to each orientation as the average response, 
normalized to unit length, and all responses for each orientation were scaled by a 
single factor so that the average projection of responses onto this direction was one, 
and single trial projections were then obtained by the inner product of normalized 
single-trial responses and each of the five population directions.

Because the four average response dimensions were not entirely orthogonal, 
on each trial, we termed the population direction associated with the presented 
grating as that trial’s ‘gain direction’, and orthogonalized projections onto the other 
orientation directions with respect to that trial’s gain (outlined in Extended Data 
Fig. 8b). As for the decoding analysis, all photostimulated neurons were excluded 
from this analysis to prevent trivial effects due to changing the composition of 
the analysed population on different trials. For this analysis, in contrast to decod-
ing, by design grouping variables of experiment and visual stimulus orientation 
had no predictive power. We thus used ordinary least-squares regression and 
non-parametric rank correlation analysis to estimate effects and significance in 
the main text.
Rate network simulations. Our network model was modified from that studied 
previously17. It consisted of one layer of generic neurons with linear input and a 
rectifying output nonlinearity, and instantaneous functional connections which 
could be both positive and negative. Precisely, the network dynamics obeyed the 
following discrete time equations:

= − + +�r r Wr ht t t

= ++ �r r r dtmax(0, )t t t1

=h U yT

where rt is a vector of firing rates in the network at time t, W is a matrix of func-
tional connections between neurons (with all diagonal entries set to 0), and h is a 
vector of feedforward inputs to each neuron, given by the product of neural tuning 
U (with columns ui of individual neuron’s tuning) and network input y. Individual 
neuron tuning was given by a von Mises function:

α θ θ= −u kexp( cos(2( )))i i

where θi is the preferred orientation of a neuron (uniformly tiling 0–180°), and 
α is selected such that ǁuiǁ2 = 1. Tuning width as specified by k was set to 1. As 
outlined in Fig. 4h and Extended Data Fig. 9a, we constructed the W matrix as a 
sum of three components:

ε= + +W U Us cT

where s controls the relationship between feedforward inputs and functional con-
nectivity, c controls overall excitatory-inhibitory levels, and ε is a matrix of i.i.d. 
values. ε was 0 for all analyses except for Extended Data Fig. 9b, for which it was 
uniformly distributed between −0.25 and 0.25. Our ‘amplification’ network used 
s = 0.5, ‘competition’ used s = −0.5, and ‘untuned’ used s = 0, but similar results 
were obtained for a wide range of values. For each network, c was adjusted so that 
overall inhibition was similar. Without this adjustment, it would be impossible to 
compare networks, since ‘amplification’ networks would exhibit explosive growth 
of activity. Specifically, we used c = −0.7 for ‘amplification’, c = 0 for ‘competition’, 
and c = −0.35 for ‘untuned’ networks. For results in Fig. 4, the network contained 
100 neurons and, for Fig. 5, 180 neurons, although network behaviour was largely 
unaffected by this choice. For all simulations, dt was set to 0.001, the simulation 
was initialized with =r 0 and run for 4,000 time steps (that is, 4× the neural 
time-constant), and network responses were taken as the summed rate over all 
time steps for each neuron.

For the analysis of Extended Data Fig. 9b, we simulated variable responses 
by varying inputs between single simulation runs (‘trials’). We varied both the 
gain of the feedforward input (uniformly distributed between 0.75 and 1.25) and 
an additive offset to the input of each individual neuron (uniformly distributed 
between –β/2 and β/2, where β was 10 times the average neural activity of all 
neurons over all stimuli). We note that gain variability was not necessary for the 
results demonstrated; however, adding it led to a positive relationship between 
signal and noise correlations in all modelled networks, in agreement with data. 
We generated 1,000 simulated responses for each of 18 orientations uniformly 
tiling orientation space, for each network type. Regression coefficients were then 
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obtained by linear regression of signal and noise correlations, calculated using 
simulated responses, against the entries of matrix W. This was intended to verify 
that our general findings from analysis of influence in Fig. 3 were consistent with 
our ‘competition’ model network.

For simulations involving single-neuron stimulation (results in Extended Data 
Fig. 9e, f), we clamped the activity of a single neuron to a high value (0.1) from 
the beginning of a simulation run, and normalized network responses by their 
response magnitude without clamping. The gain of network responses was meas-
ured by projecting single trial responses onto the direction of network activity 
on trials without clamping. We note that the small bump in gain for all networks 
in Extended Data Fig. 9f for <10° is due to the simplified ‘clamping’ approach 
to modelling single-neuron stimulation, as it corresponds to a slightly reduced 
increase in activity due to clamping for stimuli which ordinarily drive the clamped 
neuron to fire.

We created a ‘mixed’ network, used in Fig. 5, by adding an ‘amplification’ pattern 
of functional connectivity (with s = 0.5) calculated with tuning width k = 100 to 
the ‘competition’ pattern (s = −0.5, k = 1). To match experimental data, we also 
subtracted this same pattern from functional connectivity of oppositely tuned 
neurons (that is, after rotating the columns of the connectivity matrix by 90° of 
preferred orientation), although we observed no differences between networks 
whether we performed this latter step or not. We generated noisy responses by 
adding random values uniformly distributed between −0.015 and 0.015 to each 
neuron’s input on each simulation run. We measured trial-to-trial network pattern 
correlations and network pattern shifts by comparing network responses on simu-
lated noisy trials to a template response with no noise but identical visual stimulus. 
Our objective was to quantify the observation that ‘mixed’ networks exhibited a 
stereotypical smooth bump of activity in orientation space in the presence of noise, 
unlike ‘competition’ networks. We thus computed the cross-correlation in orienta-
tion space between template and single-trial responses; the maximum correlation 
across all shifts was the ‘network pattern correlation’, and the change in centre-of-
mass was ‘network pattern shift’.
Simplified network equations. The network described above can be analyti-
cally re-expressed as a function of a comparison between inputs and an internal 
representation, as presented in Extended Data Fig. 9g. The equations presented 
are derived and explained in detail here. We first examine the linear part of the 
network dynamics given above, focusing on changes in an individual neuron’s 
activity indexed by i:
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Subsequent equations suppress temporal indices for simplicity. Substituting for wi,j 
(with no weight variability, that is, ε = 0) and hi and rearranging terms we obtain:
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We then define = ∑ ≠−
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net  as a linear ‘reconstruction’ or internal representa-
tion of the network input excluding neuron i. Similarly, we define = ∑ ≠−r rj i ji

sum  
as total activity in the network excluding neuron i. We then obtain the simplified 
equation:
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This derivation was demonstrated previously17 for the special case of s = −1 and 
c = 0. In this scenario, each neuron is driven by the overlap of the residual of −y yi

net 
with its tuning ui, implementing a dynamic ‘explaining away’ of the network’s 
inputs.

Statistical procedures. No statistical methods were used to predetermine sample 
size. The experiments were not randomized and the investigators were not blinded 
to allocation during experiments and outcome assessment. Statistical tests used are 
specified in figure legends. We generally used non-parametric tests. We also used 
a bootstrap procedure both to calculate standard errors and for certain hypothesis 
tests. For standard error calculation, we re-calculated a test statistic (for example, 
mean or standard deviation of a sample) on subsets of our data sampled 1,000 times 
from the full dataset with replacement. The standard deviation over bootstraps was 
used as the standard error of the test statistic. For hypothesis testing, used for cal-
culating significance of influence regression coefficients, we performed influence 
regression 10,000 times on resampled data. The percentiles of the distribution for 
each coefficient are used for box and whisker plots, and the P values reported are 
double the fraction of the bootstrap distribution in which the coefficient was 0 or 
of opposite sign to the median value. The reported P values from this bootstrap 
procedure are thus ‘two-sided’.
Code availability. The custom code used for data collection and pre-processing for 
study has been deposited online: https://github.com/HarveyLab/Acquisition2P_
class for motion correction, https://github.com/Selmaan/NMF-Source-Extraction 
for source extraction. Analysis code is available from the corresponding author 
upon reasonable request.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
The data that support the findings of this study are available from the correspond-
ing author upon reasonable request.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Photostimulation characterization and methods. 
a, Left, GCaMP6s and densely expressed, soma-localized C1V1 in the 
same neurons. Right, Channelrhodopsin-2 tagged with mCherry, from  
a different mouse. Note that non-localized channels are prominent in  
the neuropil background compared with soma-localized channels.  
b, Photostimulation protocol schematic. Top, beam position as a function 
of time; samples of mirror trajectory plotted at 100 kHz. Bottom, four 
repeats of an identical sweep were used to photostimulate neurons. 
c, Photostimulation triggered average images, for a neuron (left) and 
control (right) site from the experiment in Fig. 1b. Arrows mark the 
locations of both sites. d, Cumulative density plots of photostimulated 
neuron responses for different lateral displacements of target location 
from the neuron’s centre. Same data as in Fig. 1f, but note log scale of 
x-axis. The 15–25-μm offset caused responses that were not present at 
greater distances. e, Fraction of neurons that could be photostimulated 
as a function of the threshold for this classification. At a threshold 
of 5 s.d. above shuffle, more than 96% of neurons (n = 518) could be 
photostimulated. Shuffle distributions were computed by bootstrap 
resampling of activity from trials in which the neuron was not targeted. 

f, Fit quality of the GP tuning model versus photostimulation magnitude. 
Each dot is a single targeted neuron (n = 518 neurons). Spearman 
correlation, c = 0.084, P = 0.055. g, Mean gratings response of a neuron 
versus photostimulation magnitude. Each dot is a single targeted neuron 
(n = 518 neurons). Spearman correlation, c = 0.11, P = 0.009.  
h, A convolutional neural network (CNN) was trained with human-
labelled data to predict whether CNMF sources were identified as a 
cell body or an alternative source, including distinct neural processes, 
excessively blurry or out-of-plane cells, or artefactual sources 
(see Methods). Note that many non-soma sources exhibited similar 
calcium transient signals as cell body sources. Because there is no 
objective ground-truth for this classification, held-out datasets were hand 
labelled, and compared to CNN labelling. One example dataset is shown 
here. The large majority of sources were labelled identically, but there were 
borderline cases for which labels differed; many cases appear to result 
from either human error in labelling, owing to finite human time and 
inconsistencies in making borderline judgments, or an overly conservative 
CNN criteria for cell classification. Neither of these errors are expected to 
affect the results presented here.
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Extended Data Fig. 2 | Influence measured as probability excited/
inhibited (log-odds excited). a, Log-odds excited metric. This metric 
uses a non-parametric bootstrap procedure to estimate the chance of 
observing average responses to photostimulation of a target from random 
sampling of a neuron’s activity (see Methods). An influence value of 0.1 
corresponds to a log-odds of ~1.259, or a probability of being excited 
above shuffles of ~0.557. This metric adapts to the varyingly sparse, 
heavy-tailed, and skewed response distributions of each neuron’s activity, 
and so complements the ΔActivity measure. Key analyses from Figs. 2, 3 
were repeated using this log-odds metric. b, Calculation of influence using 
the activity of a non-targeted neuron. Examples are shown for two pairs 
of neurons. Left, deconvolved activity of a non-targeted neuron on trials 
photostimulating a different neuron (red). Black lines indicate 5% and 
95% bounds from resampling all trials. Data were smoothed with a 67-ms 
s.d. Gaussian filter for display only. Right, mean deconvolved activity for 
non-targeted neuron averaged over 0.367 s following photostimulation of 
target (red). Probabilities for obtaining a given deconvolved activity from 
the shuffle distribution of the non-targeted neuron are shown (black). 
c, Influence bias (average of signed influence values) as a function of 
distance between the targeted site and non-targeted neurons., plotted for 
both neuron and control photostimulation targets. Mean ± s.e.m. Same 
pairs as in Fig. 2g, n = 153,689 neuron site pairs, 90,705 control site pairs. 
d, Influence magnitude measured as the absolute value of influence values 
for all pairs following neuron or control site photostimulation. The non-
zero value for control sites is expected because of noise due to random 
sampling of neural activity and potential off-target effects. Mean ± s.e.m. 
n = 153,689 neuron site pairs, 90,705 control site pairs. Neuron versus 
control: P = 2.31 × 10−5, Mann–Whitney U-test. e, Influence bias for 
a single target was the mean of influence values for the targeted neuron 
across all non-targeted neurons. Mean ± s.e.m. across targets. n = 518  
neuron targets, 295 control targets. P = 7.40 × 10−4, Mann–Whitney 

U-test. f, Influence dispersion for a single target was the s.d. of influence 
values for the targeted neuron across all non-targeted neurons. 
Mean ± s.e.m. across targets. n = 518 neuron targets, 295 control targets. 
P = 2.3 × 10−6, Mann–Whitney U-test. g, Mean influence for all values for 
a single target was calculated. The s.d. of these values for neuron sites and 
control sites is plotted. The similar values indicate that it is unlikely that 
some neurons tended to have much larger positive or negative influence 
than expected based on control sites. n = 518 neuron sites, 295 control 
sites. P = 0.88, two-sample F-test. h, Running average of influence with 
noise correlation, for nearby (black) or distant (grey) pairs, with bin 
half-width of 20% (percentile bins). i, Running average of influence with 
signal correlation, with bin half-width of 15% (percentile bins). j, Running 
average of influence with difference in preferred orientation, with bin half-
width of 12.5°. k, Coefficient estimates for linear regression of influence 
values. Plots show bootstrap distribution with median estimate as grey 
line, 25–75% interval as box, 1–99% interval as whiskers. Left, coefficients 
for piece-wise linear distance predictors from the model. Significance 
estimated by bootstrap: 25–100 μm, offset P = 0.0006, slope P < 1 × 10−4; 
100–300 μm, offset P < 1 × 10−4, slope P < 1 × 10−4; > 300 μm, offset 
P = 0.68, slope P = 0.056. Right: coefficients for activity predictors 
from the same model. Signal correlation, P = 0.0002; signal–distance 
interaction, P = 0.96; noise correlation P = 0.0010; noise–distance 
interaction, P = 0.0024; signal–noise interaction P = 0.14; n = 64,485 
pairs. l, Coefficient estimates from separate models in which the specified 
tuning correlation replaced signal correlation in the influence regression 
model of k, same bootstrap and boxplot conventions. Each model used 
only pairs in which targeted and non-targeted neurons exhibited tuning. 
Direction, P = 0.21, n = 36,565 pairs; orientation, P = 0.0026, n = 36,565; 
spatial frequency, P = 0.30, n = 47,810; temporal frequency, P = 0.011, 
n = 26,526; running speed, P = 0.11, n = 46,634.
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Extended Data Fig. 3 | Extended comparison of photostimulation of 
neuron sites and control sites. a, Comparison of influence bias (mean 
ΔActivity) between neuron and control site photostimulation, after 
exclusion of pairs with individually significant influence values. The 
significance of each individual pair’s influence was determined with  
a non-parametric bootstrap (Extended Data Fig. 2, Methods), and a  
P value threshold for significance was chosen to restrict the fraction 
of false positives to less than 5% or 25% (pFDR, Methods). For 0%, 
n = 153,689 neuron and 90,705 control pairs. 225 neuron and 26 control 
pairs were excluded for 5% pFDR, 638 neuron and 50 control pairs were 
excluded for 25% pFDR. Influence following neuron photostimulation 
was significantly negative for all thresholds; Mann–Whitney U-test, 0% 
P = 8.90 × 10−16, 5% P = 7.24 × 10−15, 25% P = 5.72 × 10−12. b, As in 
a but for influence dispersion (s.d. of ΔActivity). Influence dispersion 
was greater following neuron than control photostimulation for all 
thresholds; two-sample F-test, 0% P = 6.84 × 10−39, 5% P = 6.04 × 
10−20, 25% P = 2.63 × 10−14. c, As in a, b, but for influence bias as a 
function of distance. A quantitatively similar centre–surround pattern was 
observed for all thresholds. d, Average influence values for a non-targeted 
neuron (over all photostimulated neurons) versus that neuron’s average 
deconvolved activity during non-photostimulated trials in influence 
mapping blocks. Each dot is a single non-targeted neuron. n = 8,552 
neurons. Spearman correlation, c = −0.00003, P = 0.99. e, As in d, but for 

mean trace correlation during tuning measurement blocks. c = 0.0068, 
P = 0.53. f, As in d, but for trace correlation strength. c = 0.0099, P = 0.36. 
g, As in d, but for gratings response. c = 0.0092, P = 0.38. h, As in d, but 
for GP tuning model fit quality. c = 0.011, P = 0.29. i, Mean influence for 
all values for a single-target was calculated. The s.d. of these values for 
neuron sites and control sites is plotted. The similar values indicate that 
it is unlikely that some neurons tended to have much larger positive or 
negative influence than expected based on random sampling of the group 
mean (which was lower for neuron than control sites, see Fig. 2). Data 
shown as mean ± s.e.m. across targets. n = 518 neuron targets, 295 control 
targets, P = 0.72, two-sample F-test. j, Running average of influence with 
pairwise distance using bin half-width of 30 μm. Shading corresponds 
to mean ± s.e.m. calculated by bootstrap. Data are divided into 
influence from photostimulation sites with stronger versus weaker direct 
photostimulation responses in the targeted neuron, using a median split of 
photostimulation significance, as well as for control site photostimulation. 
Mean photostimulation response was 0.36 ΔF/F and 0.85 ΔF/F for weak 
and strong groups, respectively. Note that the weak distance-dependence 
observed for control site photostimulation is consistent with greatly 
reduced, but non-zero, neural excitation when targeting control sites. 
This may result from a number of factors including suboptimal resolution 
and brain movement in vivo, and indicates the necessity of control site 
photostimulation.
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Extended Data Fig. 4 | Characterizing neural tuning in V1 using 
GP regression. a, GP model fit quality (Pearson correlation with held-
out data). Each neuron plotted at its relative position in an individual 
experiment’s FOV. Neurons at all positions were similarly well fit.  
b, 2D histogram of GP model fit quality (‘test accuracy’) and prediction 
quality on not-held-out data (‘train accuracy’). Major overfitting was 
not observed. c, Depth of modulation (see Methods) for each individual 
tuning dimension, for all neurons that passed model fit criteria. 
Dimensions exhibited qualitatively distinct distributions. Left, many 
neurons had almost no drift direction modulation, with many others 

exhibiting extremely pronounced modulation (>10). Right, almost all 
neurons exhibited moderate modulation (~5) by running speed.  
d, z-scored tuning curves for each individual tuning dimension, for all 
neurons that passed model fit criteria and had significant modulation 
(>2) for the plotted dimension. Tuning was qualitatively different for 
different dimensions. Spatial frequency tuning was distributed evenly 
over our stimulus set and generally bandpass. Running speed tuning was 
distributed more tightly into a few neurons that preferred stillness, versus 
many that broadly preferred running. e, Significance of tuning for each 
dimension as determined by GP regression.
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Extended Data Fig. 5 | Comparison of GP tuning model and 
conventional parametric tuning model. a, Model fit qualities for an 
example session, assessed on left-out data. Each dot is a single neuron, 
n = 358 neurons. GP model fit qualities were higher than those from 
the parametric tuning model, mean difference of 0.11, P = 5.02 × 10−60, 
Mann–Whitney U-test. b, Estimated preferred orientations of neurons 
were similar between models. Pearson correlation c = 0.88, calculated 

using only neurons significantly tuned to orientation. c, Estimated spatial 
frequency preferences of neurons were similar between models; c = 0.95 
calculated using only neurons significantly tuned to spatial frequency.  
d, Signal correlations calculated from the two models were similar; 
c = 0.80. e, Noise correlations calculated from the two models were 
similar; c = 0.94.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Influence regression separates contributions of 
correlated similarity metrics. a, Probability density functions estimated 
by kernel smoothing for distance (left) and signal correlation (right), for 
all data used in influence regression (n = 64,485 pairs). Separate densities 
were estimated for pairs that exhibited varying trace correlation (left) or 
noise correlation (right). Pairs with high trace correlations occurred at all 
distances, but more often for nearby neurons. Similarly, signal correlations 
for pairs with high versus low noise correlations were distinct but 
overlapping distributions. This highlights the importance and feasibility 
of using influence regression to disambiguate the contributions of 
distance, signal, and noise correlation. b, 2D probability density functions 
for pairs of similarity metrics, estimated using kernel smoothing, for all 
data used in influence regression. Spearman correlation values for each 
pair of similarity metrics are overlaid. All correlations were significant 
with P < 1 × 10−60, n = 64,845 pairs. c, Running average of influence data 
(black) and predictions (coloured lines) from influence regression model, 
using a bin half-width of 15% (percentile bins). Black lines and shading 
show mean ± s.e.m. of data by bootstrap. Signal correlation is plotted 
against mean influence, for the subset of pairs more than 300 µm apart. 
Model predictions are computed using a full influence regression model 

(blue), or using subsets of coefficients from the same model (distance, red; 
signal, green; noise, purple). The full model prediction is equal to the sum 
of the three components. The running average analysis here accurately 
reflects the signal component of the influence regression model, plus a 
tonic offset from the distance component. d, Running average as in c, but 
for noise correlation and pairs at all distances. Note that signal and noise 
interaction coefficients with distance are included in signal and noise 
components, respectively. The running average analysis here confusingly 
indicates a flat slope of noise correlation and influence. Our model 
predicts this relationship because pairs with higher noise correlations were 
located at shorter distances, and also had increased signal correlations, 
and these effects together cancelled out increases in influence due to noise 
correlation. e, Running average as in c, but for model-free correlations 
of single-trial responses, and for pairs separated by less than 125 µm. At 
short distances, the positive effect of noise correlations dominated the 
negative effect of signal correlations. f, Running average as in c, but for 
model-free correlations of single-trial responses, and for pairs separated 
by more than 125 µm. At long distances, the negative effect of signal 
correlations dominated the positive effect of noise correlations.
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Extended Data Fig. 7 | Results of influence regression are robust 
to potential artefacts from data processing and off-target 
photostimulation. a, Analysis of influence effects directly in ΔF/F traces.  
ΔFluorescence was calculated as for ΔActivity, but using ΔF/F traces 
rather than trial-averaged deconvolved activity. ΔFluorescence was 
significantly negative in the 1 s following neuron photostimulation  
relative to control; n = 153,689 neuron site pairs and 90,705 control site 
pairs. Neuron versus control site: P = 6.79 × 10−15, Mann–Whitney  
U-test. Data in all plots shown as mean ± s.e.m. calculated by bootstrap. 
b, ΔFluorescence in non-targeted neurons following photostimulation 
of neurons at varying distances. n = 1,822 near pairs, 35,541 mid-range 
pairs, 35,882 far pairs. Near versus mid-range: P = 7.62 × 10−19; near 
versus far: P = 5.0 × 10−6; mid-range versus far: P = 1.21 × 10−47; 
Mann–Whitney U-test. c, As in b, but without neuropil subtraction, or 
any source de-mixing from CNMF; traces were extracted by projecting 
raw movies onto neuron ROIs. n = 1,822 near pairs, 35,541 mid-range 
pairs, 35,882 far pairs. Near versus mid-range: P = 5.96 × 10−28; near 
versus far: P = 5.21 × 10−38; mid-range versus far: P = 4.15 × 10−13; 
Mann–Whitney U-test. This indicates that distance-dependent influence 
effects were not an artefact of source extraction algorithms. d, The 
influence regression from Fig. 3d was applied to ΔFluorescence traces. 
This regression resulted in beta coefficients for traces at each time 
frame relative to photostimulation onset, which are plotted over time. 
Coefficients for slopes for the three distance bins are plotted. The same 
size and ordering of effects is apparent as when using deconvolved data 
and the ΔActivity metric (compare to Fig. 3). Mean ± s.e.m. calculated 

using 10,000 coefficient estimates by bootstrap resampling. All coefficients 
were significantly different from zero, averaged over 0–1,000 ms from 
photostimulation onset, with P < 1 × 10−4 by bootstrap. e, As in a but for 
signal and noise correlation coefficients. Averaged over 0–1,000 ms from 
photostimulation onset, signal correlation coefficients were significantly 
less than zero with P = 0.0008 and noise correlation was greater than 
zero with P = 0.0154, estimated by bootstrap. f, Similar to regression 
analysis in Fig. 3d, e, but as a test of potential off-target effects. Instead of 
using only the photostimulated neuron’s activity and tuning properties to 
calculate correlations with the non-targeted neuron, properties of multiple 
nearby neurons were used, to test whether off-target photostimulation 
of nearby cells could underlie the observed effects (see Methods). This 
is equivalent to influence regression using identical influence values and 
distance predictors as in Fig. 3e, but changing all activity predictors. Only 
distance effects were apparent, as expected, whereas activity-related effects 
were absent. This suggests that the properties of the individually targeted 
neuron were responsible for the influence relationships we observed. Plots 
show bootstrap distribution with median estimate as grey line, 25–75% 
interval as box, 1–99% interval as whiskers. Left, coefficients for piece-
wise linear distance predictors from the model. Significance estimated 
by bootstrap: 25–100 μm, offset P = 0.0982, slope P < 1 × 10−4; 100–300 
μm, offset P < 1 × 10−4, slope P < 1 × 10−4; >300 μm, offset P = 0.0018, 
slope P = 0.0316. Right, coefficients for activity predictors from the same 
model. Signal correlation, P = 0.9370; signal × distance interaction, 
P = 0.4072; noise correlation P = 0.8772; noise × distance interaction, 
P = 0.5138; signal × noise interaction P = 0.5260; n = 64,485 pairs.
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Extended Data Fig. 8 | Population analysis of gratings responses during 
influence mapping blocks. a, The orientation information content of 
all neurons during influence mapping blocks, calculated using the same 
binning approach used for population decoding. Information is colour 
coded, and plotted as a function of a neuron’s directional modulation 
and preferred spatial frequencies estimated during tuning measurement 
blocks. This demonstrates that tuning estimated in tuning and influence 
measurement blocks were concurrent (gratings during influence mapping 
were always 0.04 cycles per degree), but that responses to full-field,  
low-contrast gratings in influence measurement blocks were sparse.  

b, Schema indicating the orthogonalization procedure used for population 
analysis. In brief, because average responses to each grating orientation 
were not entirely orthogonal, and because photostimulation evoked 
highly significant changes in response gain in our dataset, we wished to 
isolate potential changes along alternative population activity dimensions 
independent of gain changes. To accomplish this, we orthogonalized 
projections along non-gain dimensions relative to the gain projection 
observed on individual trials. This ensured that changes in response 
gain could not trivially produce changes along non-gain population 
dimensions.
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Extended Data Fig. 9 | ‘Toy’ model of feature competition and its 
functional implications. a, Diagram of rate-network model, in which 
each neuron i receives feedforward input ui driven by the orientation of a 
visual stimulus and has functional connection wi,j with neuron j. Neurons 
were modelled as rectified-linear units. b, Influence regression coefficients 
for the rate-network model. Signal and noise correlations were estimated 
from noisy simulated trials and regressed against functional connections 
(W), similar to Fig. 3d, e. To be consistent with experimental data, random 
trial-to-trial fluctuations in gain as well as single-neuron-specific noise 
were added to simulations (see Methods), such that all networks exhibited 
a positive correlation between signal and noise correlations. However 
results were similar without simulated gain fluctuations. c, Model neuron 
responses following presentation of a 90° stimulus. Feedforward inputs 
were identical for all networks. Colours are the same as in a. Dashed line 
indicates orientation of the visual stimulus. d, Model neuron responses 
following presentation of a linear sum of 60° and 120° stimuli. Grey lines 
are the average response of each network to the two stimuli presented 

individually. Note that neurons that preferred 70° and 110° receive the 
maximum feedforward input. e, Model neuron responses to a visual 
stimulus (90°) with simulated photostimulation of a neuron. Responses 
(in non-stimulated neurons) are shown when the ‘photostimulated’ 
neuron had preference for similar (top, 80°) or dissimilar (bottom, 10°) 
orientations relative to the visual stimulus, colour coded by network type. 
Responses are normalized to activity without simulated photostimulation. 
f, Model network responses to visual stimuli with simultaneous 
‘photostimulation’, as a function of difference in orientation between 
visual stimulus and ‘photostimulated’ neuron’s preference. The response 
gain dimension was calculated as the normalized response to the visual 
stimulus in the absence of ‘photostimulation’. g, Analytical solution for 
the linear aspect of network dynamics (see Methods for derivation). This 
indicates that the network performs a comparison between inputs y and an 
internal estimate ynet, which when s is negative corresponds to dynamical 
explaining away of network inputs.
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Extended Data Fig. 10 | Interaction of trace correlation with influence 
regression model coefficients. a, Further characterization of the effects of 
trace correlation on feature competition versus amplification (compare to 
Fig. 5d). Influence regression (as in Fig. 3d) was performed after including 
an interaction of each predictor with the magnitude of trace correlation. 
Coefficient estimates for each interaction plotted with uncertainty from 
bootstrap: grey line, median; box, 25–75% interval; whiskers, 1–99% 
interval. This analysis used no manually specified division between ‘strong’ 
and ‘weak’ correlations, and considered whether trace correlation changed 
the relationship between influence and any predictors in the influence 

regression. Signal correlation exhibited a highly significant positive 
interaction, indicating a transition from competition (negative slope) 
to amplification (positive slope) as the magnitude of trace correlation 
increased; n = 64,845 pairs, P = 0.0002 (bootstrap). Interactions with all 
other activity predictors were not significant (P > 0.444). Interactions 
with the slopes of distance predictors were not significant (P > 0.2716). 
There were weak interactions with offsets for near (P = 0.0486) and mid 
(P = 0.0076) distance bins, but not for far (P = 0.4738). These results 
indicate that the magnitude of trace correlation had a substantial effect on 
the relationship between signal correlation and influence.



1

nature research  |  reporting sum
m

ary
O

ctober 2018

Corresponding author(s): Christopher Harvey

Last updated by author(s): Feb 2, 2019

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Data collection was managed using Scanimage software. Additional custom code was written in Matlab and is publicly available at the 
locations specified in Methods.

Data analysis Custom code was written in Matlab, using the publicly available DataJoint framework for data management, and is available from the 
corresponding author on reasonable request. We also used the freely available and open-source GPML toolbox for gaussian process 
regression, as cited in Methods.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. 



2

nature research  |  reporting sum
m

ary
O

ctober 2018

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was not predetermined before experiments. A large dataset was collected before any analysis began, and no data was added 
subsequent to the beginning of analysis.

Data exclusions Some experiments were excluded from analysis based upon online judgments made during an experiment concerning general data quality 
and stability of acquisition conditions. These decisions were made prior to analysis and before assembling the complete dataset for analysis, 
and were not subsequently altered.

Replication There were no measures taken to ensure replication outside of that reported in this manuscript

Randomization There were no applicable experimental groups in this study

Blinding While there are no applicable 'experimental groups' in this study to blind, we note that photostimulation targets were chosen blindly with 
respect to visual response properties of that neuron.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Male C57BL/6J strain Mus musculus were obtained from Jackson Laboratories at 4 weeks old

Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals 
were caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if 
released, say where and when) OR state that the study did not involve wild animals.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight All experimental procedures were approved by the Harvard Medical School 
Institutional Animal Care and Use Committee and were performed in compliance with the Guide for Animal Care and Use of 
Laboratory Animals

Note that full information on the approval of the study protocol must also be provided in the manuscript.


	Single-neuron perturbations reveal feature-specific competition in V1

	Photostimulation of targeted neurons

	The magnitude of influence in layer 2/3 of V1

	Tuning similarity is inversely related to influence

	Functional effects on population encoding

	Feature competition can support perceptual inference

	Non-competitive influence

	Discussion

	Online content

	Acknowledgements
	Reviewer information
	Fig. 1 Photostimulation of targeted neurons.
	Fig. 2 Measurement and characterization of influence.
	Fig. 3 Relationship of influence to activity similarities between neurons.
	Fig. 4 Effects of feature competition on population encoding of orientation.
	Fig. 5 Strongly correlated pairs exhibit non-competitive influence.
	Extended Data Fig. 1 Photostimulation characterization and methods.
	Extended Data Fig. 2 Influence measured as probability excited/inhibited (log-odds excited).
	Extended Data Fig. 3 Extended comparison of photostimulation of neuron sites and control sites.
	Extended Data Fig. 4 Characterizing neural tuning in V1 using GP regression.
	Extended Data Fig. 5 Comparison of GP tuning model and conventional parametric tuning model.
	Extended Data Fig. 6 Influence regression separates contributions of correlated similarity metrics.
	Extended Data Fig. 7 Results of influence regression are robust to potential artefacts from data processing and off-target photostimulation.
	Extended Data Fig. 8 Population analysis of gratings responses during influence mapping blocks.
	Extended Data Fig. 9 ‘Toy’ model of feature competition and its functional implications.
	Extended Data Fig. 10 Interaction of trace correlation with influence regression model coefficients.




