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SUMMARY
The hippocampus is critical for episodic memory. Although hippocampal activity represents place and other
behaviorally relevant variables, it is unclear how it encodes numerous memories of specific events in life. To
study episodic coding, we leveraged the specialized behavior of chickadees—food-caching birds that form
memories at well-defined moments in time whenever they cache food for subsequent retrieval. Our record-
ings during caching revealed very sparse, transient barcode-like patterns of firing across hippocampal neu-
rons. Each ‘‘barcode’’ uniquely represented a caching event and transiently reactivated during the retrieval of
that specific cache. Barcodes co-occurred with the conventional activity of place cells but were uncorrelated
even for nearby cache locations that had similar place codes. We propose that animals recall episodic mem-
ories by reactivating hippocampal barcodes. Similarly to computer hash codes, these patterns assign unique
identifiers to different events and could be a mechanism for rapid formation and storage of many non-inter-
fering memories.
INTRODUCTION

The hippocampus is critical for remembering events in a single-

shot, ‘‘episodic’’ fashion.1–3 Episodic memories bind together

concepts, actions, and sensory impressions that co-occurred

within a single experience. It is not known how the firing of hippo-

campal neurons implements this function. Theories of episodic

memory often depend on place cells,4 which encode spatial

location. Importantly, place cells fire differently even in the

same environment, depending on contextual variables like

sensory cues,5–8 task goals,9–11 and time.8,12,13 These complex

responses are hypothesized to provide a code for episodic

memory, in which place cells distinguish between different

events, including those occurring in the same location.7,14

However, everyday life involves experiencing hundreds of

events, often in the same spatial context. To store these mem-

ories, place cells would have to rapidly form a new representa-

tion every time the animal experienced amemorable event. In ef-

fect, the hippocampus would constantly modify its ‘‘map’’ of the

same environment. It is unclear whether place cells undergo

such incessant remapping in the course of routine memory for-

mation.15 Activity of place cells does change with experience,

but most studies of these changes have focused on slow,

gradual learning of an environment16–21 or on dramatic contex-

tual memories like fear conditioning.22,23

An alternative idea is that episodic memories are represented

by a mechanism distinct from place cells.24–28 In this model,
place cells provide a relatively stable representation of an ani-

mal’s spatial and non-spatial context, while additional activity

represents specific events within that context. Relatively stable

place cells would allow a shared representation of context to

associate with many distinct memories.

Testing these ideas has been challenging because it requires a

behavior with many memorable episodic experiences. Food-

caching birds provide a solution to this problem. These birds

specialize in hiding thousands of food items in scattered, con-

cealed locations.29,30 Retrieval of caches depends on memory,

both in the wild29,31 and in laboratory conditions.32–34 Memories

are accurate with centimeter precision29,34,35 and can last many

days.36,37 Birds remember not only the location but also the con-

tent and the relative time of a cache.33,38 By convention, these

three components (‘‘what, where, when’’) define a memory as

‘‘episodic-like.’’39–41 Although cache memories lack some fea-

tures of human episodic memory, including autobiographical

recall,1 they retain many of the same key features: they form

quickly, associate with a specific location, and bind place

with other content. Cache memories also depend on the hippo-

campus,42,43 which is homologous between birds and mam-

mals44,45 and enlarged in food-caching species.46,47

A major advantage of food-caching behavior is that it contains

many discrete, well-defined moments of memory storage that

can be examined with neural recordings. Recent studies have

found mammalian-like place cells in birds,48–50 suggesting that

hippocampal mechanisms are likely shared across vertebrate
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species. However, recordings during food caching have not been

previously reported. We set out to record hippocampal activity in

a food-caching bird, the black-capped chickadee. We engi-

neered an experimental setup for high-density neuronal record-

ings in chickadees as they performed large numbers of caches,

retrievals, and investigations of cache sites. We examined how

the hippocampus represents individual caching events and

how this episodic encoding relates to the conventional coding

of place.

RESULTS

Neural recordings in food-caching chickadees
Chickadees form new memories during food-caching events.

Our first goal was to characterize hippocampal activity during

these episodes. We optimized a food-caching setup34 to obtain

exceptionally large numbers of caching events. The setup was

an arena with 128 cache sites concealed by cover flaps (Fig-

ure 1A). Sunflower seedswere provided to chickadees bymotor-

ized feeders that opened for brief periods during a session.

Because caching is motivated by the instability of food supply,51

this schedule encouraged chickadees to cache seeds whenever

feeders opened (Video S1). When feeders closed, chickadees

spent most of the time hopping around the arena and sometimes

‘‘checking’’ sites by opening cover flaps. Although not explicitly

required to do so, chickadees covered most of the arena and

used most of the sites for caching (Figure S1). They often

retrieved caches, eating some of them and recaching others at

different locations. Chickadees also checked sites without

retrieving seeds, implying that checks were not simply errors in

finding caches.

We recorded behavioral videos from six vantage points using

high-resolution cameras. We also developed algorithms for milli-

meter-precision, 3D postural tracking of points on the bird’s

body in these videos (Figure 1B; Video S2). A seventh camera

was used to detect the contents of the cache sites through a

transparent bottom layer of the arena. Automated tracking al-

lowed us to record the chickadee’s location, to detect when its

beak made contact with a site, and to determine whether seeds

were placed or removed at a site.

We defined four types of non-overlapping, stereotyped events

(Figures S2A and S2B): caches, retrievals, checks (opening a site

cover without caching or retrieving), and visits (landing at a site

without opening the cover). Caches, retrievals, and checks usu-

ally started right after the bird landed at a site (within 100 ms). To

analyze these events, we defined a time window from the open-

ing to the closing of the cover flap. Caches and retrievals were

brief (median duration 1.2 s and 1.5 s). Checks were even briefer

(typically <200 ms), and we excluded a small fraction of longer

checks during which the bird could have interacted with the

cached seed. Visit duration was highly variable because birds

sometimes remained at a site to rest or eat a seed. We used a

1 s window centered on landing at a site to exclude these longer

periods of immobility. Our definitions ensured that all four events

were restricted to times when the chickadee was actively mov-

ing. In a typical session, chickadees produced many events:

68–149 caches, 66–145 retrievals, 742–1,838 checks, and

434–885 visits (25th–75th percentile, n = 54 sessions, Figure 1C).
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Chickadees are small (�10 g) and make dexterous head

movements to cache food. To record neural activity, we engi-

neered a lightweight (�1.2 g) miniature microdrive assembly

housing a silicon probe. Although the device was chronically im-

planted, we fully retracted the probe from the brain between

recording sessions. This ‘‘semi-acute’’ procedure prevented

the typical deterioration of neural signals over time and allowed

us to record stable numbers of units, typically for >1 month.

We recorded in the anterior hippocampus, which contains abun-

dant place cells in other avian species.48–50 As in other behav-

ioral tasks and species, hippocampal activity was spatially

modulated in our arena during site visits. According to standard

definitions, 56% of the neurons were place cells (2,462/4,366

units in 5 chickadees). These cells had similar firing rates, stabil-

ity, and spatial information to avian place cells in a more conven-

tional random foraging task48,50 (Figure S3).

Individual neurons respond strongly during caches
Activity during caching events was strikingly different from other

time points, with many neurons exhibiting unusually high or low

firing rates. We used a Poisson likelihood metric to quantify

how strongly each neuron’s activity deviated from its mean firing

rate. In this measure, increases and decreases in firing rate both

produced positive deviations. We then measured the average

deviation of firing rates across the recorded population. This

measure showed strong peaks around cache times (Figure 1D)

and was dramatically higher during caches than during other

types of events (Figure 1E). Firing rate deviation was higher

even when we compared caches to events selected for roughly

similar types of movement by the bird (Figures S2C and S2D).

To understand these large changes in population activity, we

separately analyzed putative excitatory and inhibitory cells.

These neuronal classes are identifiable in birds using firing rates

and spike waveforms.48 Excitatory cells were largely silent dur-

ing caches (Figures 2A and 2B). Relative to data in which caches

were randomly shifted in time, 64% of cells had a significant

decrease in firing rate, and only 6% had an increase (n = 2,528

excitatory units, p < 0.05). A typical excitatory neuron fired below

its average rate on 93% of the caches, producing zero spikes

during most caches.

We analyzed the remaining 7% of the caches, when a neuron

fired above its average rate. These ‘‘cache responses’’ scattered

throughout the environment and did not obviously relate to the

neuron’s place tuning (Figure 2A), often occurring well outside

of a place field. Cache responses occurred at similar rates in

place cells and non-place cells (Figure S4A), suggesting that

they engaged not specialized cells but the general hippocampal

population. Firing rates during these responses were often

exceptionally high. We compared these rates to shuffled data,

counting only those shuffles that also had above-average firing

rates. Expressed as a percentile of shuffles, cache responses

deviated from a uniform distribution with a peak at �100% (Fig-

ure 2C). In other words, excitatory neurons were mostly sup-

pressed during caching but, on a small fraction of caches, fired

some of the largest bursts of spikes ever observed in those

neurons.

Different excitatory neurons were active on different caches,

forming sparse patterns of population activity. Because



Figure 1. Neural recordings in food-caching chickadees

(A) Schematic of a 763 76 cm behavioral arena containing 128 cache sites with 5.3 cm minimum spacing. Each site consists of a perch and a cavity in the floor

covered by a rubber flap. The chickadee lifts the cover to interact with a site. Site contents are not visible from above once the cover snaps closed but are camera

monitored from below through a transparent floor.

(B) Left: frames from a single video camera. Right: 3D reconstruction using 6 cameras, showing 18 tracked keypoints registered to themodel of the arena. Yellow,

orange, and red are keypoints on the bird’s left, midline, and right. View angle is slightly rotated relative to the video frame.

(C) Behavioral session with three periods during which feeders were open. The chickadee cached new seeds during feeder-open periods. During feeder-closed

periods, it retrieved seeds and recached many of them, thus increasing the cumulative number of caches and retrievals throughout the entire session. The

chickadee also ‘‘visited’’ sites (perch landing without interacting with the site) and ‘‘checked’’ sites (opening the cover flap without caching or retrieving). Note that

seven sites were baited at the start of the session.

(D) Behavior and neural activity during �4 min of a feeder-closed period. The chickadee frequently hopped between perches (as shown by the peaks in foot

speed) and constantlymoved its head (as shown by beak speed). Top: quantification of how strongly activity across all neurons deviated from average firing rates.

Increases and decreases in firing rate both produced positive peaks in deviation. Firing rates strongly deviated during caches.

(E) Firing rate deviations for the four event types, measured by averaging values in a 1 s window centered at the offset of each event. Medians across events were

then computed for each session, and cumulative histograms of the medians were calculated across 54 sessions.

See also Figures S1 and S2.
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sparseness could be driven by inhibition,52 we next analyzed pu-

tative inhibitory cells. Just like excitatory cells, inhibitory cells

showed highly variable responses across caches, although

these responses were not sparse (Figure 2A). Unlike excitatory

cells, they could on average be either suppressed or enhanced

(33% and 36% of 1,031 inhibitory units, p < 0.05; Figure 2D).

The strength of this effect was asymmetric: enhanced neurons

included extremely active cells that fired above their average

rates on nearly every cache (>95%). These cells formed a distinct

subpopulation containing 14% of inhibitory units (Figure 2D).

Repeating our percentile analysis for inhibitory cells showed

that during caching, they produced some of the strongest activ-

ity ever observed in these cells (Figure 2E).
Together, our results show that caching engages a distinct

state of hippocampal activity. In this state, a subpopulation of

inhibitory cells is enhanced, and excitatory cells produce a

very sparse pattern of firing across the population. Strong, brief

changes to hippocampal firing are often associated with sharp-

wave ripples (SWRs).53 Although mammalian-like SWRs exist in

birds,48 we found that they were exceedingly rare during ca-

ches (Figure S5). Caching typically occurred immediately after

a bird had arrived at a site, but SWRs happened after pro-

longed periods of immobility, especially during eating. Cach-

ing-related population activity was therefore not obviously

equivalent to the network states previously described in the

hippocampus.
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Figure 2. Individual neurons respond strongly during caches

(A) Bottom: spatial maps for six neurons, plotted from zero (blue) to maximum firing rate (yellow). For all cells except the fourth one, maximum is peak rate across

the arena; for the fourth (‘‘silent’’) cell, peak rate is 0.15 Hz butmaximum of the plot is 1 Hz. Rate wasmeasured at sites during visits and fit to locations not at sites.

Circular symbols, positions of sites; gray circular symbols, sites that were cached into at least once in the session; red ‘‘x’’s, ‘‘cache responses’’—i.e., locations

where the neuron was active above its mean firing rate. Top: firing rates of the same neurons during all caches. Blue and red stems: caches with firing rates below

and above the mean rate. For excitatory cells, cache responses are marked with location to match with the spatial maps below. Cache responses were sparse

and not clearly related to place fields. Inhibitory cells were non-sparsely enhanced or suppressed by caching.

(B) Fraction of caches during which an excitatory neuron responded. For most neurons, this fraction was lower than expected from shuffled data. Color indicates

neurons that were significantly suppressed or enhanced with p < 0.05.

(C) For all cache responses, comparison of firing rate to shuffled data, considering only shuffles with above-average firing rates. Cache responses often exhibited

exceptionally high rates.

(D) Same as (B) for inhibitory cells. A subpopulation of inhibitory cells was strongly enhanced by caching.

(E) Same as (C) for inhibitory cells.

See also Figures S3 and S5.
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Unique population ‘‘barcodes’’ represent caches
There are two major questions about the cache responses.

First, are they consistent for specific locations? In other

words, do these responses repeat if a chickadee caches

multiple times into the same site? Second, what is the relation-

ship between cache responses and the activity of place

cells? To address these questions, we defined a population

vector of activity for each caching event. We then measured

the correlation of these vectors for pairs of caches at the

same site and at different sites. We compared these

‘‘cache-cache’’ correlations to those measured for visits

(‘‘visit-visit’’ correlations).

Visit-visit correlation decayed roughly exponentially with dis-

tance between sites (Figure 3A). This is expected from the activ-

ity of place cells. Because a typical place field has some spatial

extent, correlation of activity is high for nearby sites but lower for

distant sites. From here on, we normalized all correlation values
4 Cell 187, 1–14, April 11, 2024
by the visit-visit correlation at zero distance—i.e., a normalized

correlation of 1 is expected for a pair of visits to the same site.

In addition to providing an intuitive measure of correlation,

normalized correlation is unaffected by extrinsic factors that

vary across experiments, such as the number of recorded units

or level of noise.

Cache-cache correlation also decayed at nonzero distances,

indicating smooth spatial tuning during caches. Indeed, place

cells continued to be active during caching. However, cache-

cache correlation sharply deviated from a smooth function at

zero distance (Figure 3B). Caches at the same site were corre-

lated with a value of �4.5. This high correlation shows that re-

sponses were consistent across multiple caches into the same

site, beyond what is expected from place cells. Signs of this

can be seen in individual neurons: for example, the third cell in

Figure 2A repeatedly fired during caches into the same sites

(H6 and J6).



Figure 3. Unique population ‘‘barcodes’’ represent caches

(A) Correlation of population activity for pairs of visits. Correlation decayed

gradually, indicating a smooth place code. All correlations are normalized such

that the visit-visit value at zero distance is 1 across the dataset. Correlation

decayed to a negative value because each neuron’s average activity across all

visits was subtracted from each population vector. All units, including excit-

atory and inhibitory, are included in the analysis. Error bars: SEM, not visible

when smaller than the symbols. Dotted curve: exponential fit to points at

nonzero distances.

(B) Same as (A) for pairs of caches. Correlation showed a strong site-specific

component of activity not explained by the place code.

(C) Activity of neurons across caches after subtraction of the place code and

the average cache response. We refer to this activity as the ‘‘barcode.’’ Firing

rates are Z scored relative to shuffled data, computed separately for each

neuron. Neurons were conservatively classified as excitatory or inhibitory, with

some neurons left unclassified.

See also Figure S4.
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Notably, correlation was elevated for caches only at the

same site. Correlation even between adjacent cache sites

(just �5 cm apart) was much lower and consistent with the

value expected from place cells, whose activity was partially

correlated at 5 cm distances (i.e., compare Figures 3A and

3B). The sharp peak in correlation implies that cache responses

of individual neurons were spatially isolated and did not signif-

icantly cluster (Figure 2A). These spatially punctuated re-

sponses were markedly different from place fields, which typi-

cally extended over multiple nearby sites. We confirmed this

increase in spatial specificity during caching using population

decoding (Figure S4E).
Our observations suggest two patterns of population activity in

the hippocampus. One pattern is the conventional, spatially

smooth ‘‘place code.’’ The place code is similar for nearby sites

and is engaged during both visits and caches. The second

pattern is highly specific to an individual site and uncorrelated

even between adjacent sites. It occurs only when the bird is

caching a seed but not when it simply visits the same site. We

call this site-specific, transient activity a ‘‘barcode.’’ A barcode

uniquely represents a cache site and involves increased firing

in a sparse subset of neurons against a background of suppres-

sion in the remaining neurons. Notably, the place code and the

barcodes engage the same population of neurons in the hippo-

campus (Figures S4A–S4D).

Because cache responses combined place code and bar-

code activity, we developed a procedure for separating these

two components. To estimate the place code at a site, we

temporarily left that site out and spatially interpolated activity

at other sites. Repeating this procedure for all sites produced

a spatially smooth function over the environment—i.e., the

place code. To estimate the barcode, we subtracted the place

code from activity recorded during caches. Figure 3C shows a

matrix of residuals after subtracting the place code and the

average across caches. Excitatory cells in this matrix are

mostly silent but occasionally show strong responses. There-

fore, their activity appears as sparse positive values (red) on

top of negative vertical bands (ranging from white to blue).

Inhibitory cells show a mix of positive and negative responses.

The population vector, represented by each row of the matrix,

is what we call the barcode.

Barcodes reactivate during site interactions
What is the purpose of barcodes? Our hypothesis is that a bar-

code represents a memory formed by caching at a particular

site. In this case, onemight expect barcodes to reactivate during

other behaviorally relevant times. A reasonable starting point is

to compare caches with other events at the same site. We there-

fore considered retrievals, checks, and visits.

Activity was strongly correlated between caches and re-

trievals at the same site (Figure 4A). This correlation began

increasing �250 ms before the bird’s beak touched the site

and continued for the duration of the two events. There was

a similar, but briefer, reactivation between caches and checks

(Figure 4B), reflecting the shorter duration of the checks. In

contrast to retrievals and checks, visits were much more

weakly correlated with caches (Figure 4C). This weak but pos-

itive correlation of �1 is expected from place coding during

both caches and visits. These analyses show that cache-

related activity indeed reactivated, specifically during retrievals

and checks—i.e., those events when the bird accessed the

contents of the site. Reactivation was transient and precisely

aligned to behavior.

We also found that reactivation was highly site specific. There

was no strong correlation between caches at one site and events

at adjacent sites (�5 cm away; Figures 4D–4F). For all events,

correlation with caches decayed exponentially as a function of

distance (Figures 4G–4I). For retrievals and checks, however,

correlation deviated above the smooth exponential at zero

distance. This suggests that the smooth place code was active
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Figure 4. Barcodes reactivate during site in-

teractions

(A) Correlation of activity during caches with ac-

tivity during retrievals at the same site, averaged

across all cache-retrieval pairs. Zero is the time

that the bird’s beak made contact with the site

cover. Population activity vectors were smoothed

with a Gaussian window (s = 100 ms). Activity

transiently reactivated between the two events.

The shape of the reactivation peak was asym-

metric because retrievals were on average longer

and had a heavy-tailed distribution of durations.

(B) Same as (A) but for cache vs. check

comparison.

(C) Same as (A) but for cache vs. visit comparison.

Correlation was weaker and consistent with re-

activation of the place code.

(D–F) Same as (A)–(C) but comparing caches with

events at adjacent sites (�5 cm away). Re-

activation was weak in all cases.

(G–I) Correlation of activity during caches with

activity during other events as a function of dis-

tance between sites. There was a gradual decay in

all cases, demonstrating the presence of a smooth

place code. During retrievals and checks, there

was also a reactivation of the site-specific bar-

code. Error bars: SEM, not visible when smaller

than the symbols.
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during all events, but there was an additional reactivation of the

barcode during retrievals and checks. We confirmed this by

isolating the barcodes from the cache responses using the pro-

cedure described above and by correlating neural activity to

these barcodes. Correlation to the barcodes was high for re-

trievals and checks at the same site (3.0 ± 0.25 and 1.6 ± 0.14,

mean ± SEM, n = 54 sessions) but lower for visits (0.55 ± 0.10),

including visits that were matched to retrievals in duration or

other features (Figure S4F). Correlation of the barcode to events

at adjacent sites was low (0.25 ± 0.06, 0.17 ± 0.02, and

0.07 ± 0.02).

We also adapted this analysis to determine how strongly in-

dividual neurons contributed to barcode reactivation. Re-

sponses formed a continuum across the population, with no

evidence of clustering that could warrant dividing cells into

‘‘barcode’’ and ‘‘non-barcode’’ neurons. This is similar to

‘‘place cells,’’ which are defined as neurons above an arbitrary

statistical threshold on a continuum of spatial selectivity. Using

a similar statistical threshold, we found that 29% of excitatory

and 30% of inhibitory neurons contributed strongly to

barcode reactivation. Place coding and barcoding fully mixed

in the population, with no relationship between a neuron’s

strength of participation in the place code and the barcode

(Figures S4B–S4D).
6 Cell 187, 1–14, April 11, 2024
Barcodes represent specific
caching episodes
Why do barcodes reactivate? An

intriguing possibility is that a barcode rep-

resents a cache memory, which is re-

called at behaviorally relevant times like

retrievals and checks. However, an
important consideration is that caches, retrievals, and checks

are similar; for example, they involve similar motor actions by

the bird. Therefore, an alternative possibility is that the barcode

is not related to memory but represents the conjunction of a

particular action with location. One way to distinguish these pos-

sibilities is to compare different caching events that occurred at

the same site. If barcodes represent specific events, they should

be different even between caches at the same site. If barcodes

represent the conjunction of action with location, they should

be identical across these caching events.

We found systematic differences between barcodes at the

same site. Barcode-barcode correlation was high for pairs of

consecutive caches but decreased for pairs separated by

intervening caches (Figure 5A). This effect could result from the

animal’s experiences (i.e., intervening caches) or from a drift in

neural activity over time. To distinguish these possibilities, we

analyzed consecutive barcode pairs as a function of the time in-

terval between them (Figure 5B). This analysis revealed two phe-

nomena. First, correlations were elevated for pairs separated by

less than 5 min. This effect was independent of location and not

specific to caching—i.e., hippocampal activity was generally

correlated on an �5 min timescale (Figure S6A). Second, corre-

lation remained high at long intervals, asymptoting at �5. This

value exceeded the correlation between barcodes separated



Figure 5. Barcodes represent specific

caching episodes

(A) Top: schematic of the analysis. Analysis com-

pares barcodes during caches (‘‘C’’) that occurred

at the same site but at different times. ‘‘D cache #’’

is the separation of a cache from the one indicated

by the black circle: e.g., 1 indicates two consec-

utive caches, 2 indicates two caches separated by

one intervening cache, etc. Bottom: average cor-

relation of barcodes as a function of D cache #.

Increasingly separated caches had increasingly

different barcodes.

(B) Correlation of two consecutive caches as a

function of their separation in time. The trace

asymptoted at a high value (horizontal dotted line,

also replicated in A), indicating that barcodes

became less similar not due to elapsed time but

due to intervening caches.

(C) Top: schematic of the analysis, with retrievals

(‘‘R’’) assigned a retrieval #. Retrieval #1 is

‘‘matched’’ to the cache indicated by the black

circle. Bottom: correlation of the barcode to the

retrieval as a function of retrieval #. Matched

retrieval (#1) had the strongest correlation to the

barcode.

(D) Correlation of the barcode to retrievals immediately preceding and following a cache (#s�1 and 1) as a function of their separation in time from the cache. The

barcode most strongly correlated to the subsequent retrieval, and this effect was stable for long time intervals.

(E) Same as (C) but for checks (‘‘K’’). The barcode most strongly correlated to the check that immediately followed the cache.

(F) Same as (D) but for checks. Checks are analyzed separately depending on whether they occurred before or after the retrieval that followed the cache. Barcode

reactivation during checks was strong immediately after a cache but did not persist at long time intervals. The decay in reactivation strength was even faster after

the seed was retrieved.

Error bars in all panels: SEM.

See also Figure S6.
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by intervening caches (compare values in Figures 5A and 5B). In

other words, even if two consecutive caches were far apart in

time, their barcodes were more similar than if there was an inter-

vening cache. Therefore, barcode-barcode correlation

decreased due to the animal’s experience rather than elapsed

time. We confirmed these results using a linear mixed-effects

model (Figure S6B). In summary, barcodes were distinct across

caching events at the same site.

This analysis suggests that a barcode does not simply repre-

sent caching at a particular site but encodes a unique caching

event—i.e., an episode that existed only once in the chicka-

dee’s life. To further test this idea, we asked whether barcode

reactivations were also distinct across retrievals at the same

site. At each site, a chickadee produced some sequence of ca-

ches and retrievals. In this sequence, a ‘‘matched pair’’ was a

cache paired with the first retrieval that followed it. We

reasoned that the recall of a cache memory should most likely

occur during its matched retrieval. We found that barcode-

retrieval correlation was indeed strongest for matched pairs

(Figure 5C). Correlation was weaker for all later retrievals as

well as for retrievals that preceded the cache. In other words,

activity during a retrieval reactivated the barcode of a highly

specific, correctly matched caching event.

Can this effect be explained by temporal proximity of the

cache and its matched retrieval? Across our dataset, matched

pairs of caches and retrievals were separated by a wide range

of time lags, from seconds to tens of minutes. We therefore

analyzed correlation as a function of this time lag (Figures 5D
and S6C). Again, there was a short-latency effect in the data: ca-

ches and retrievals were more correlated when separated by

less than �5 min. However, reactivation remained stronger for

matched pairs, even at lags of 45 min.

In summary, the hippocampus produced a distinct barcode

during each caching event. This barcode reactivated during a

subsequent retrieval from the same site. Reactivation occurred

even after long delays. These results suggest that the barcode

represents a specific episodic experience, unique in place and

time in the chickadee’s life.

We repeated these analyses for checks. Barcode-check cor-

relation was also stronger for checks that followed the cache

(Figure 5E). However, reactivation during checks was not as

persistent as during retrievals. Barcode-check correlation de-

cayed to baseline with a timescale of 13.8 min (Figure 5F, dark

green trace; Figure S6D). Note that this does not imply that mem-

ory disappeared; in fact, a retrieval after this time would reacti-

vate the barcode. Rather, reactivation was context dependent:

sometime after caching, reactivation stopped occurring during

checks and only occurred during retrievals. After retrieval, the

barcode-check correlation decayed even faster, with a time-

scale of 5.0min (Figure 5F, light green trace; Figure S6E). In other

words, once a cache was retrieved, the hippocampus quickly

stopped reactivating the corresponding barcode.

Place code is unaffected by caching
Our results show that cache memories are represented by barc-

odes. Are caches additionally represented by the place code?
Cell 187, 1–14, April 11, 2024 7



Figure 6. Place code is unaffected by

caching

(A) Schematic of the arena for analyzing the effect

of caching on place cells. The arena is similar to the

one shown in Figure 1 but has cache sites ar-

ranged along a circular track of 160 cm circum-

ference with 8 cm spacing.

(B) Alignment of activity to the rewarded feeder,

which was changed on a session-by-session ba-

sis. Each row is a neuron’s spatial tuning curve

around the circular track, unwrapped. Rate is

normalized from 0 (blue) to the peak (yellow) for

each cell. For clarity, only neurons that had a peak

firing rate exceeding 3 standard deviations of the

entire spatial tuning curve are shown. Place fields

were overabundant near the rewarded feeder.

Note that due to arena geometry, activity has some

4-fold symmetry: outside of their main place field,

some cells produce smaller firing fields in the same

location relative to the other three feeders.

(C) Alignment of activity to sites containing cached

seeds. Place fields were not overabundant near

caches.

(D) Effect of caching on spatial firing. For each neuron, we compared spatial tuning curves before and after a cache using four metrics that were sensitive to the

amplitude, width, location, and shape of the firing fields. Black traces: averages across all neuron-cache pairs as a function of the distance between the neuron’s

peak firing rate from the cache. Shaded areas: 99% confidence interval computed by shuffling cache times. All measures were within the shuffle distribution,

demonstrating that caches did not produce significant changes to place tuning.
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Place maps change in experience-dependent ways across a

number of experimental conditions.16–21 We thus asked whether

place-cell firing was different before and after caching. This anal-

ysis was challenging in our 2D arena because obtaining 2Dmaps

requires sufficient coverage of the environment both before and

after a cache. We therefore designed a 1D version of the arena in

which chickadees moved and cached around a circular track

(Figure 6A). The advantage of this trackwas repeatable behavior:

birds typically visited the same site many times before and after

each cache, allowing a comparison of activity acrossmany trials.

We recorded in 7 additional chickadees, using calcium imaging

with a head-mounted microscope.

In rodents, place fields shift with experience and become

overabundant near rewards.17,20,54 We first asked whether

chickadee place fields similarly clustered around food sources

and/or cache locations. The food source in our experiment was

one of four feeders selected on a session-by-session basis. We

first rotated each neuron’s spatial map around the circular track

such that the map was in feeder-centered coordinates with the

rewarded feeder at 0�. Consistent with rodent data, place fields

in these coordinates were non-uniformly distributed (p < 0.001

Kolmogorov-Smirnov test, Figure 6B), with overabundance

around the rewarded feeder. We next considered caches and

analyzed activity during the time period when a site contained

at least one seed. For each cache, we rotated spatial maps

such that they were in cache-centered coordinates with the

cache site at 0�. Place fields in cache-centered coordinates

did not deviate from a uniform distribution (p = 0.12, Figure 6C)

and were more uniform than in feeder-centered coordinates

(p < 0.001). Thus, although the place map reorganized around

food sources, it was not influenced by caches.

We also looked for other types of changes to the place map

in response to caching. Across published experiments, place
8 Cell 187, 1–14, April 11, 2024
fields have been observed fully remapping,6,7,22 changing their

firing rates,7,9,10 changing their widths,55,56 changing their

shapes,55,57 or shifting their locations.17,20,54 Caching did not

trigger any of these changes (Figure 6D). Spatial patterns

before and after a cache were not more different than expected

from randomly shuffling cache times. Although we cannot rule

out more subtle effects, cache memory seems to be mainly

represented in the transient barcode rather than in the

place code.

Hippocampal neurons respond to cached seeds
So far, we have focused on activity patterns that are spatially

selective. These patterns include place codes and barcodes.

However, neurons also had non-spatial changes in activity.

Earlier, we showed that many cells were suppressed or

enhanced on average across all caches, regardless of the

site location (Figure 2). What causes changes to the average

firing rate during caching? We examined whether these

changes might encode a non-spatial aspect of the chickadee’s

experience.

An important variable for the chickadee is the presence or

absence of a seed in a site. Checks provide an opportunity to

study this variable because chickadees check occupied sites

that contain a cache as well as empty sites. We found that

many neurons fired at different rates during occupied and empty

checks, regardless of site location (Figure 7A). These differences

were especially prominent in inhibitory cells: they were signifi-

cant in 36% of the inhibitory and only 4% of the excitatory units

(p < 0.01). We defined the ‘‘seed vector’’ as the difference in pop-

ulation activity between occupied and empty checks. We then

measured the strength of the ‘‘seed response’’ by projecting

population activity onto this vector (i.e., computing the dot prod-

uct with the seed vector). This response was cross validated by



Figure 7. Hippocampal neurons respond to cached seeds

(A) Raster plot of activity during checks. Zero is the time that the bird’s beak made contact with the site cover. For display purposes, the same number of empty

and occupied checks was selected randomly from the session. The neuron showed a response to the seed in the site.

(B) Average projection of neural activity onto the ‘‘seed vector,’’ defined as the difference in population activity between occupied and empty checks.

(C) Activity of the same neuron as in (A) but during visits. Response to the cached seed is absent.

(D) Same as (B) but for visits.

(E) Activity of the same neuron as in (A) and (C) but during caches. Caches are ordered by duration, with both onset and offset shown (dashed lines). The neuron

responded around cache offset.

(F) Average projection of neural activity during caches onto vectors defined by the place code, the barcode, and the seed code. Data were smoothed with a

Gaussian window (length = 250 ms, by convention s = 47 ms). Activity was aligned separately to onsets and offsets of caches; median cache duration was 1.2 s.

Error bars in all panels: SEM.

See also Figure S7.
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holding out one check at a timewhen computing the seed vector.

Seed responses diverged between occupied and empty checks

�100 ms after the bird lifted the cover flap and peaked just after

check offset (Figure 7B). The seed response was absent when

the chickadee visited a site without checking (Figures 7C

and 7D).

The seed response was strong not only during occupied

checks but also during caches (Figures 7E and S7). In population

activity and in single-cell firing, this response was tightly locked

to the offset of the cache—i.e., the moment when the chickadee

left a seed in the site. The seed response was not as strong be-

forehand in spite of the chickadee’s having a prolonged interac-

tion with the seed before leaving it in the site. The seed response

thus seemed to occur only when the bird attended to a seed in a

site, during both checks and caches.

We wondered how the time course of the seed response

compared to other activity patterns. We projected population

activity onto cross-validated place code and barcode vectors

for each site. We found that the three responses followed

different time courses (Figure 7F). The place code peaked prior

to the cache, roughly when the chickadee arrived at the site.

The barcode increased prior to the onset and peaked during

the cache itself. The seed response peaked at the offset of the

cache. Place, barcode, and seed projections showed similar

timing during visits, checks, and retrievals, although the magni-
tudes of barcode and seed projections were smaller than during

caches (Figure S7). Our results show a complex sequence

of hippocampal responses during caching, synchronized with

behavior on a sub-second timescale.

DISCUSSION

Our recordings reveal sparse patterns of hippocampal activity

(barcodes) that uniquely represent food-caching events. We

use the term ‘‘barcoding’’ by analogy with other examples in

biology where unique labels are defined by a vector code,

such as a sequence of nucleotides (DNA barcoding58 and

cellular barcoding59) or a set of powers across different wave-

lengths (spectral barcoding60,61). This term has therefore been

applied to vectors that are binary, otherwise discrete valued, or

even continuous valued—as in the case of firing rates across

neurons in our study. Tagging of distinct events by unique iden-

tifiers is also analogous to ‘‘hash coding’’ in computer science.

Barcodes are a population vector code—a concept that in-

cludes many other examples, including the place code. We

use the more specific term ‘‘barcode’’ to describe them because

they differ from most other population vector codes in neurosci-

ence. Themost notable difference is that population vectors usu-

ally correlate to smooth, continuous features of the world, such

as spatial location in the case of the place code. Throughout a
Cell 187, 1–14, April 11, 2024 9
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behavioral task, these vectors therefore occupy a low-dimen-

sional manifold whose structure is related to the structure of

the task itself.11,62–64 Barcodes, on the other hand, are seemingly

random and uncorrelated even between adjacent sites. The lack

of a correlation structure implies that these codes are extremely

high dimensional, with at least as many dimensions as there are

cache sites. Another difference is that barcodes activate tran-

siently, only for the brief time that it takes a chickadee to interact

with a cache site, whereas the place code is active during all

movement. Finally, barcodes are not stable representations of

any variable, including location: they are different even across

caches at the same site. These properties are instead consistent

with a barcode’s being a unique signature of a specific event.

A crucial observation is that cells participating in barcodes are

not a specialized class of neurons. Although it is possible, using

standard statistical thresholds, to quantify what fraction of cells

participate in barcodes (�30%), this fraction represents an arbi-

trary end of a continuum andwill increase asmore caches are re-

corded. This is similar to the place code, for which the fraction of

significant place cells (�50% in our study) is defined by an arbi-

trary threshold on a continuum of spatial selectivity. In addition,

barcode and place code responses are fully mixed in the hippo-

campal population, with no evidence of clustering into ‘‘barcode

cells’’ or ‘‘place cells.’’ In other words, there is no relationship be-

tween an individual neuron’s barcode activity and its place

tuning.

There are many other examples of mixed selectivity in the hip-

pocampus—i.e., the coding of both spatial location and other

task variables by the same population of neurons.5,7,9–11,14

This is often observed when hippocampal neurons modify their

spatial representations (‘‘remap’’) in response to changes of sen-

sory stimuli or behavioral goals.6,14,65–67 One difference from this

phenomenon is that barcodes are site specific and discontin-

uous in space and therefore do not encode yet another smooth

map of the environment. Rather, barcode firing seems to be a

truly distinct state of hippocampal activity, with an increased

level of inhibition and a sparsification of neural responses.

Switching between place coding and barcoding is therefore

different from the conventional remapping between two smooth

spatial representations. Finally, barcodes are different even for

caches at the same location. Therefore, they cannot be easily ex-

plained by conjunctive coding of spatial location with other task

variables.

Many studies have shown that experience can modify the

firing of place cells. For example, place maps of different envi-

ronments gradually diverge as an animal spends time exploring

these environments.19 Place fields also reorganize to overrepre-

sent rewards and other salient locations.17,20,54,68 Changes to

place fields can even be sudden, suggesting a capacity for rapid

learning.22,23,69–71 In contrast to these studies, we have not

observed changes to the place code resulting from food-caching

events. This finding implies a dissociation of hippocampal mech-

anisms for different types ofmemory. Acquired knowledge about

consistent features of an environment may be represented by

the place code. In contrast, specific events within that environ-

ment appear to be represented by barcodes.

Our work parallels ideas about episodic memory from

other systems. In the human hippocampus, activity patterns
10 Cell 187, 1–14, April 11, 2024
that occur during memory formation reactivate during episodic

recall.26,72–75 It is generally assumed that reactivated neurons

are tuned to specific components of the memory. For instance,

a neuron responsive to a specific object in a movie scene may

fire when a person describes that object later in time. Recent

work, however, found that some hippocampal neurons represent

specific episodes (e.g., several objects occurring together in a

scene) without responding separately to the individual compo-

nents of those episodes.26 This event-specific activity may be

similar to the chickadee barcodes.

In animal models, the concept of an ‘‘engram’’ is often used

to describe cells that represent a memory.76,77 As with the hu-

man data, there is an ongoing inquiry into the nature of en-

grams. In the traditional definition, an engram includes all cells

that reactivate between memory formation and recall. In our

data, these cells would include not only the barcode but also

place cells and seed-responsive cells. More recent studies

have proposed treating cells that were already active before

a memory (such as place cells) separately from those that

become newly active during memory formation.27,28 Our find-

ings are consistent with barcodes being engrams in this up-

dated definition.

Overall, our data provide no evidence that barcodes are

unique to chickadees. Rather, some features of the food-cach-

ing behavior might have simply made these patterns detect-

able in the neural data. These behavioral features include

exceptionally large numbers of memory storage and recall

events that occur at well-defined locations and moments in

time. It may be possible, in both human and animal models,

to design behavioral tasks that offer some of the same advan-

tages. Rodents and bats, for example, excel at spatial mem-

ory, exhibit single-shot learning that resembles avian cache

memory,20 and show hippocampal responses to brief, salient

events.67,78

Our analysis shows a precise temporal coordination of

the barcodes with the place code and the seed code. During a

caching event, these codes occur within a window of �1 s,

compatible with known mechanisms of fast hippocampal plas-

ticity.70,71,79 It is conceivable that a similar mechanism in birds

synaptically links neurons that participate in these codes. One

idea is that during memory formation, neurons involved in the

barcode connect with place cells and seed-responsive cells, in

effect linking representations of place and food. In this model,

barcodes bind different components of memory but prevent

interference that would arise if, for example, many place cells

directly linked to the same neuron representing a sunflower

seed. As a result of this binding, partial reactivation of place or

seed inputs—e.g., when a bird is searching for a nearby

cache—could reactivate the barcode. This idea is consistent

with the theory that hippocampal neurons encode an index

that binds inputs active during an episode.24–26

Our results make it tempting to conclude that barcode reacti-

vation is a mechanism of memory recall. We have not shown this

to be generally the case. Reactivation during checks and re-

trievals happens when the chickadee is already at a cache site,

about to open the cover flap. However, memory recall does

not happen only locally but should also happen in advance

when a chickadee decides where to travel next. Such remote
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recall is especially important for an animal navigating through a

large natural environment that is sparsely populated by caches.

To be a mechanism of remote recall, barcodes should activate

whenever birds make navigational choices that are guided by

cache memories. This prediction remains to be tested in

future work.

Limitations of the study
A major question is to what extent our results will generalize to

other forms of episodic memory. Food caches are relatively

simple events that occur at single moments in time. Episodic

memory, however, can reference multiple temporally linked

events and recall them in an entire sequence.1 Neural signals

in our study have also been analyzed across a relatively short

timescale of �1 h, which is in the range of intermediate-term

memory.80 Episodic memories, in contrast, are often stored

long term and can last a lifetime. Even chickadees have

been shown to remember caches for up to a month36 in spite

of typically retrieving food within several hours.29 We do not

know if barcodes are used in these more general conditions

or whether they interact with other hippocampal mechanisms

of episodic memory. Finally, our results do not speak to the

cellular or synaptic mechanisms of memory storage. Although

some aspects of neural dynamics have allowed us to specu-

late about these mechanisms, the barcodes remain a phenom-

enological observation about the properties of hippocampal

activity.
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mapping of hippocampal neuronal populations in jumping rats. Proc. Natl.

Acad. Sci. USA 119, e2122141119. https://doi.org/10.1073/pnas.

2122141119.

79. Milstein, A.D., Li, Y., Bittner, K.C., Grienberger, C., Soltesz, I., Magee, J.C.,

and Romani, S. (2021). Bidirectional synaptic plasticity rapidly modifies
Cell 187, 1–14, April 11, 2024 13

https://doi.org/10.3389/fnana.2014.00059
https://doi.org/10.3389/fnana.2014.00059
https://doi.org/10.1126/science.aar4237
https://doi.org/10.1159/000116516
http://refhub.elsevier.com/S0092-8674(24)00235-6/sref47
http://refhub.elsevier.com/S0092-8674(24)00235-6/sref47
http://refhub.elsevier.com/S0092-8674(24)00235-6/sref47
https://doi.org/10.1126/science.abg2009
https://doi.org/10.1073/pnas.2212418120
https://doi.org/10.1073/pnas.2212418120
https://doi.org/10.1016/j.cub.2023.05.031
https://doi.org/10.1093/beheco/8.3.332
https://doi.org/10.1093/beheco/8.3.332
https://doi.org/10.1016/j.tins.2009.01.009
https://doi.org/10.1016/j.tins.2009.01.009
https://doi.org/10.1002/hipo.22488
https://doi.org/10.1016/j.neuron.2018.06.008
https://doi.org/10.1016/j.neuron.2018.06.008
https://doi.org/10.1073/pnas.94.16.8918
https://doi.org/10.1073/pnas.94.16.8918
https://doi.org/10.1016/S0896-6273(03)00165-X
https://doi.org/10.1016/S0896-6273(00)81072-7
https://doi.org/10.1098/rsbl.2003.0025
https://doi.org/10.1098/rsbl.2003.0025
https://doi.org/10.1038/s41592-018-0185-x
https://doi.org/10.1038/s41592-018-0185-x
https://doi.org/10.1038/nmeth.2069
https://doi.org/10.1038/nature06293
https://doi.org/10.1016/j.neuron.2018.01.004
https://doi.org/10.1016/j.neuron.2018.01.004
https://doi.org/10.1038/s41586-021-03652-7
https://doi.org/10.1038/s41586-021-04268-7
https://doi.org/10.1038/s41586-021-04268-7
https://doi.org/10.1371/journal.pbio.1000403
https://doi.org/10.1038/nature10439
https://doi.org/10.1038/s41586-022-05112-2
https://doi.org/10.1037/0735-7044.111.1.20
https://doi.org/10.1037/0735-7044.111.1.20
https://doi.org/10.1038/nn.3687
https://doi.org/10.1126/science.aan3846
https://doi.org/10.1016/j.neuron.2017.09.029
https://doi.org/10.1016/j.neuron.2017.09.029
https://doi.org/10.1126/science.1164685
https://doi.org/10.1126/science.1164685
https://doi.org/10.1073/pnas.1015174108
https://doi.org/10.1002/hipo.22582
https://doi.org/10.1002/hipo.22582
https://doi.org/10.1016/j.cub.2010.01.053
https://doi.org/10.1016/j.cub.2010.01.053
https://doi.org/10.1038/nature11028
https://doi.org/10.1038/nature11028
https://doi.org/10.1016/j.neuron.2015.08.002
https://doi.org/10.1016/j.neuron.2015.08.002
https://doi.org/10.1073/pnas.2122141119
https://doi.org/10.1073/pnas.2122141119


ll

Please cite this article in press as: Chettih et al., Barcoding of episodic memories in the hippocampus of a food-caching bird, Cell (2024),
https://doi.org/10.1016/j.cell.2024.02.032

Article
hippocampal representations. eLife 10, e73046. https://doi.org/10.7554/

eLife.73046.

80. Kandel, E.R., Dudai, Y., andMayford, M.R. (2014). TheMolecular and Sys-

tems Biology of Memory. Cell 157, 163–186. https://doi.org/10.1016/j.cell.

2014.03.001.

81. Chen, T.-W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan,

A., Schreiter, E.R., Kerr, R.A., Orger, M.B., Jayaraman, V., et al. (2013). Ul-

trasensitive fluorescent proteins for imaging neuronal activity. Nature 499,

295–300. https://doi.org/10.1038/nature12354.

82. Graving, J.M., Chae, D., Naik, H., Li, L., Koger, B., Costelloe, B.R., and

Couzin, I.D. (2019). DeepPoseKit, a software toolkit for fast and robust an-

imal pose estimation using deep learning. eLife 8, e47994. https://doi.org/

10.7554/eLife.47994.

83. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Cor-

rado, G.S., Davis, A., Dean, J., Devin, M., et al. (2016). TensorFlow:

Large-Scale Machine Learning on Heterogeneous Distributed Systems.

Preprint at arXiv. https://arxiv.org/abs/1603.04467.

84. Pachitariu, M., Steinmetz, N.A., Kadir, S.N., Carandini, M., and Har-

ris, K.D. (2016). Fast and Accurate Spike Sorting of High-Channel

Count Probes with KiloSort. Adv. Neural Inf. Process. Syst. 29,

4448–4456.

85. Zhou, P., Resendez, S.L., Rodriguez-Romaguera, J., Jimenez, J.C., Neu-

feld, S.Q., Giovannucci, A., Friedrich, J., Pnevmatikakis, E.A., Stuber,

G.D., Hen, R., et al. (2018). Efficient and accurate extraction of in vivo cal-

cium signals from microendoscopic video data. eLife 7, e28728. https://

doi.org/10.7554/eLife.28728.

86. Dunn, T.W., Marshall, J.D., Severson, K.S., Aldarondo, D.E., Hildebrand,

D.G.C., Chettih, S.N., Wang, W.L., Gellis, A.J., Carlson, D.E., Aronov, D.,

et al. (2021). Geometric deep learning enables 3D kinematic profiling
14 Cell 187, 1–14, April 11, 2024
across species and environments. Nat. Methods 18, 564–573. https://

doi.org/10.1038/s41592-021-01106-6.

87. Skaggs, W., McNaughton, B., and Gothard, K. (1992). An Information-

Theoretic Approach to Deciphering the Hippocampal Code. Adv. Neural

Inf. Process. Syst. 5, 1030–1037.

88. Markus, E.J., Barnes, C.A., McNaughton, B.L., Gladden, V.L., and Skaggs,

W.E. (1994). Spatial information content and reliability of hippocampal CA1

neurons: Effects of visual input. Hippocampus 4, 410–421. https://doi.org/

10.1002/hipo.450040404.

89. Nath, T., Mathis, A., Chen, A.C., Patel, A., Bethge, M., and Mathis, M.W.

(2019). Using DeepLabCut for 3D markerless pose estimation across spe-

cies and behaviors. Nat. Protoc. 14, 2152–2176. https://doi.org/10.1038/

s41596-019-0176-0.

90. Mott, R., Herrod, A., Hodgson, J.C., and Clarke, R.H. (2015). An Evaluation

of the Use of Predicted Harness Spans for Correctly Fitting Leg-Loop Har-

nesses in Seabird Research. Waterbirds 38, 420–424.

91. Mackevicius, E.L., Gu, S., Denisenko, N.I., and Fee, M.S. (2023). Self-or-

ganization of songbird neural sequences during social isolation. eLife

12, e77262. https://doi.org/10.7554/eLife.77262.

92. Friedrich, J., Yang, W., Soudry, D., Mu, Y., Ahrens, M.B., Yuste, R., Pe-

terka, D.S., and Paninski, L. (2017). Multi-scale approaches for high-speed

imaging and analysis of large neural populations. PLoS Comput. Biol. 13,

e1005685. https://doi.org/10.1371/journal.pcbi.1005685.

93. Chettih, S.N., and Harvey, C.D. (2019). Single-neuron perturbations reveal

feature-specific competition in V1. Nature 567, 334–340. https://doi.org/

10.1038/s41586-019-0997-6.

94. Guizar-Sicairos, M., Thurman, S.T., and Fienup, J.R. (2008). Efficient sub-

pixel image registration algorithms. Opt. Lett. 33, 156–158. https://doi.org/

10.1364/OL.33.000156.

https://doi.org/10.7554/eLife.73046
https://doi.org/10.7554/eLife.73046
https://doi.org/10.1016/j.cell.2014.03.001
https://doi.org/10.1016/j.cell.2014.03.001
https://doi.org/10.1038/nature12354
https://doi.org/10.7554/eLife.47994
https://doi.org/10.7554/eLife.47994
https://arxiv.org/abs/1603.04467
http://refhub.elsevier.com/S0092-8674(24)00235-6/sref84
http://refhub.elsevier.com/S0092-8674(24)00235-6/sref84
http://refhub.elsevier.com/S0092-8674(24)00235-6/sref84
http://refhub.elsevier.com/S0092-8674(24)00235-6/sref84
https://doi.org/10.7554/eLife.28728
https://doi.org/10.7554/eLife.28728
https://doi.org/10.1038/s41592-021-01106-6
https://doi.org/10.1038/s41592-021-01106-6
http://refhub.elsevier.com/S0092-8674(24)00235-6/sref85
http://refhub.elsevier.com/S0092-8674(24)00235-6/sref85
http://refhub.elsevier.com/S0092-8674(24)00235-6/sref85
https://doi.org/10.1002/hipo.450040404
https://doi.org/10.1002/hipo.450040404
https://doi.org/10.1038/s41596-019-0176-0
https://doi.org/10.1038/s41596-019-0176-0
http://refhub.elsevier.com/S0092-8674(24)00235-6/sref88
http://refhub.elsevier.com/S0092-8674(24)00235-6/sref88
http://refhub.elsevier.com/S0092-8674(24)00235-6/sref88
https://doi.org/10.7554/eLife.77262
https://doi.org/10.1371/journal.pcbi.1005685
https://doi.org/10.1038/s41586-019-0997-6
https://doi.org/10.1038/s41586-019-0997-6
https://doi.org/10.1364/OL.33.000156
https://doi.org/10.1364/OL.33.000156


ll

Please cite this article in press as: Chettih et al., Barcoding of episodic memories in the hippocampus of a food-caching bird, Cell (2024),
https://doi.org/10.1016/j.cell.2024.02.032

Article
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

AAV9-pAAV.CAG.GCaMP6f.WPRE.SV40 Chen et al.81 Addgene plasmid #100836

Chemicals, peptides, and recombinant proteins

40,6-diamidino-2-phenylindole, dihydrochloride (DAPI) Fischer Scientific PI62247

Paraformaldehyde Electron Microscopy Sciences 15710

Critical commercial assays

nVista System Inscopix N/A

3D printer Formlabs Formlabs 3

Cameras Blackfly BFS-U3-70S7M-C

64-channel silicon probe Cambridge NeuroTech H6 ASSY-236

Nanodrive Cambridge NeuroTech Nanodrive

64-channel amplifier Intan Technologies RHD2164

Recording system Intan Technologies C3100

Motorized commutator Doric Lenses 24_PZN12

Deposited data

Behavioral data (postural tracking) This paper Dryad (https://doi.org/10.5061/dryad.7h44j101z)

Electrophysiology data This paper Dryad (https://doi.org/10.5061/dryad.7h44j101z)

Experimental models: Organisms/strains

Poecile atricapillus (black-capped chickadee) Wild-caught N/A

Software and algorithms

MATLAB 2020b Mathworks www.mathworks.com

Arduino Open-source www.arduino.cc

Inventor Autodesk www.autodesk.com

PIMAQ video acquisition software Open-source github.com/jbohnslav/PIMAQ

Laser pointer calibration software Open-source github.com/JohnsonLabJanelia/laserCalib

DeepPoseKit Graving et al.82 N/A

TensorFlow Abadi et al.83 N/A

Label 3D software Open-source github.com/diegoaldarondo/Label3D

Kilosort Pachitariu et al.84 N/A

CNMF_E Zhou et al.85 N/A
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Dmitriy

Aronov (da2006@columbia.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Processed data have been deposited on Dryad and are publicly available as of the date of publication. DOIs are listed in the key

resources table. Raw data will be shared by the lead contact upon request.

d Original code has been deposited on Dryad and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
Cell 187, 1–14.e1–e9, April 11, 2024 e1

mailto:da2006@columbia.edu
https://doi.org/10.5061/dryad.7h44j101z
https://doi.org/10.5061/dryad.7h44j101z
http://www.mathworks.com
http://www.arduino.cc
http://www.autodesk.com
http://github.com/jbohnslav/PIMAQ
http://github.com/JohnsonLabJanelia/laserCalib
http://github.com/diegoaldarondo/Label3D


ll

Please cite this article in press as: Chettih et al., Barcoding of episodic memories in the hippocampus of a food-caching bird, Cell (2024),
https://doi.org/10.1016/j.cell.2024.02.032

Article
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All animal procedures were carried out followingUSNational Institutes of Health guidelines, and approved by theColumbia University

Institutional Animal Care and Use Committee. Five black-capped chickadees (three male, two female) were used for electrophysi-

ological experiments in the 2D arena, and seven chickadees (one male, four female, two undetermined) were used for calcium

imaging experiments on the circular track. Subjects were collected from multiple sites in New York State using Federal and State

scientific collection licenses. Chickadees are not clearly sexually dimorphic, and all experiments were performed blindly to sex. Sub-

ject age at collection time was not precisely determined. Birds were collected between October and February, and data were

acquired between three months and one year after collection. Birds were housed in groups of 1–3 on a ‘‘winter’’ light cycle (9:15

light:dark hours) before experiments began.

METHOD DETAILS

2D arena design
The arena for 2D behavior and electrophysiology was adapted from a previously published design.34 It was designed in Autodesk

Inventor and constructed from five layers of laser-cut material. The top layer was a 1.5 mm thick matte white acrylic sheet. The

2nd layer was 1/3200 thick 60A durometer synthetic rubber sheet. The 3rd layer was a 1 mm thick clear acrylic sheet. The 4th layer

was a 5.6 mm thick black acrylic sheet. The bottom, 5th layer was a clear 1/800 thick acrylic sheet. Wooden dowels 3/800 in diameter

and 1.500 longwere used for perches. Percheswere alignedwith slots laser-cut through all layers of the arena, andwere secured using

Loctite Fun-Tak. Cache sites were formed by a 0.3 x 0.2500 hole cut into the 4th arena layer, with the 5th layer forming a transparent

bottom. The 2nd arena layer was cut to form a rubber flapwhich fully covered the underlying cache site, and the 1st arena layer was cut

to allow access to the underlying rubber flap. The 3rd arena layer served as a spacer between the rubber flap and the 4th arena layer, in

order to allow the bird to easily grab the flap with its beak.

The arena was designed as 4 symmetric quadrants, each containing 32 cache sites with one perch per site. Sites were positioned

such that themidpoints between the centers of the sites and their matched perches lay on a 6x6 rectangular grid with 5.3 cm spacing.

Sites were grouped in modules of 4 sites facing each cardinal direction. Four sites at the outside corner of each quadrant were elim-

inated to permit room for a feeder, resulting in a total of 128 cache sites. Feeders were constructed from 3D printed material (red,

blue, green, and yellow Processed Versatile Plastic, Shapeways). A shallow dish holding sunflower seeds was covered by a top piece

controlled by a stepper motor, allowing automated opening and closing of access to the dish beneath. The stepper motor was

controlled by Arduino and a stepper motor driver. A perch was placed next to each of the feeders. Finally, a water dish was 3D printed

(White Resin, Formlabs 3 printer) and inserted into a circular cutout in the center of the arena.

The entire arena was mounted on a custom-constructed aluminum frame. The frame also supported lighting and video cameras

described below. A 600 border constructed of matte white acrylic surrounded the arena andwas also enclosedwithin the frame. Arena

walls were constructed from white vinyl shower curtains cut to size and secured to the external frame. A single orienting cue (11 x 800

black rectangle) was positioned in the center of one of the walls. Additional cues were 12 small stickers of varying colors and shapes

placed on the floor of the arena in the space between arena quadrants.

Behavioral videos were collected using six Blackfly S cameras (BFS-U3-70S7M-C, Flir Teledyne, SONY IMX428 monochrome

sensor) using wide-angle lenses (8 mm focal length, M111FM0-8, Tamron). Four of these cameras were positioned roughly at eye

level with the chickadee in the corners of the arena. Two additional cameras were mounted on the ceiling (60 cm above the floor)

at the midpoints of two opposite edges of the arena. Each of the six cameras was oriented to obtain a complete view of all the sites

and feeders in the arena.We used 800 ms exposure times tominimize blur, and frame acquisition was synchronously triggered across

all cameras at 60 Hz rate. We used PIMAQ software (https://github.com/jbohnslav/PIMAQ) to acquire video data. Videos were com-

pressed online during acquisition to h.264 format using two NVidia RTX2080ti GPUs. Calibration for 3D registration of video data was

performed using a laser pointer (https://github.com/JohnsonLabJanelia/laserCalib). A seventh camera was positioned beneath the

arena in order to monitor the contents of cache sites. Frames of this camera were triggered synchronized with every other behavioral

frame acquisition (i.e., at 30 Hz). The arena was illuminated by white LED panels (superbrightleds.com).

Behavioral protocol
At least one week before experiments, chickadees were transferred from colony to single housing. They were provided ad-libitum

Mazuri small bird diet and weighed daily. Primary wing feathers were trimmed to prevent flight and promote ground foraging in

the behavioral arena. A miniaturized assembly containing 4 cache sites identical to those used in the behavioral arena was baited

with sunflower seeds and installed in the bird’s home cage to permit familiarization with the cache site mechanism.

Before a chickadee woke on the morning of a behavioral experiment, all food was removed from its cage. The bird was food

deprived and monitored regularly, typically for the first 3 h of the day. It was then placed in the behavioral arena. The arena contained

a fresh water tray and four motorized feeders containing raw, shelled sunflower seeds chopped into halves. In a typical session, 6–8

cache sites were baited before the bird entered the arena. Feeders were closed for the initial 20 min and opened for 6 min every

50 min the bird remained in the arena. The exact duration of food-deprivation, number of initially baited sites, and precise feeder

schedule were adjusted on a bird- and session-dependent basis, in order to optimize the bird’s caching behavior and engagement
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with the arena. Sessions were typically 120–180 min long. Birds were given at least one full day of rest with an ad-libitum food supply

between experimental sessions.

Prior to any surgical manipulations, we ran behavioral habituation sessions. Many chickadees performed caching behavior in the

arena during their initial exposure. Some birds required 2–4 behavioral sessions before readily caching and retrieving seeds, poten-

tially due to the stress of handling and the novel environment, or unfamiliarity with the cache site mechanism. Behavioral habituation

was continued until a bird appeared to comfortably perform caching behavior throughout a full session. A fraction of birds (�1/4)

either did not exhibit motivation to cache, or did not engage with cache sites, and were excluded from further experiments. For

included subjects, we excluded a small fraction of sessions where the bird performed under 30 caches during a session.

Postural tracking
Neural networks were used to track the animal’s 3D posture during behavioral sessions. We used a custom implementation of a two-

stage algorithm, inspired by theDANNCE algorithm,86 and built using theDeepPoseKit framework82 in TensorFlow 2.83 The first stage

of the algorithm consisted of a Stacked DenseNet, with two stacks and a growth rate of 40, which was trained to identify the coarse

location of the bird’s head, body, and tail in 4x spatially downsampled behavioral videos. The bird’s body position in all 6 camera

views was then used to triangulate 3D position, and the full-resolution video from each view was resampled and cropped such

that the bird was centered and at constant physical scale. The second stage of the algorithm consisted of another Stacked

DenseNet (2 stacks, growth rate 40) trained to detect 18 keypoints on the bird. Keypoints were chosen as reliably visually identifiable

points on the bird’s exterior that did not completely align to its underlying skeleton. These included the top and bottom tips of the

beak, the top and back of its head, the centers of its back and front chest, and the base and tip of its tail. They also included the

left and right eyes, lower corners of its bib marking, shoulders, ankles, and feet. The output of the second stage was the location

and detection confidence of all of these 18 markers in all 6 camera views. Conversion from pixel to 3D coordinates was performed

using standard triangulation techniques, for each frame utilizing all pairs of the four camera views with greatest confidence rankings

for that frame, and taking the median across pairs.

Training data were prepared using Label 3D software (github.com/diegoaldarondo/Label3D). An initial set of 360 frames (or 2160

images using all 6 cameras) was manually annotated. The tracking algorithm was then run on new data, and new training data were

iteratively selected using a consistency metric across views (the reprojection error) to identify postures with poor tracking perfor-

mance. This procedure was continued until reprojection errors were �1 pixel, after labeling 586 frames (3516 images). Accuracy

was judged by subjectively evaluating videos, and by comparing predictions of the algorithm with two human annotators. Tracking

was approximately as consistent with either annotator as the two were with each other (�1 mm positional difference). For analysis

used in the paper, tracked coordinates were then post-processed using a Kalman filter to enforce smoothness, and to interpolate

over rare, brief intervals where tracking was inconsistent across views (reprojection errors >12 pixels).

Action identification and neural window definitions
Continuous timeseries of 3D postural tracking data were parsed into a sequence of discrete actions. We first identified two kinds of

events: movement between sites (i.e., the bird’s feet landing on or leaving a perch), and interaction with a cache site (i.e., the tip of the

beak coming into contact with the rubber flap covering the site).

We identified movement between sites by detecting ‘‘perch arrivals’’ and ‘‘perch departures’’. These were defined by determining

when the chickadee’s feet entered or exited a 2D bounding box surrounding each perch in the arena, excluding time points where the

feet were moving rapidly (>20 cm/s). Chickadees rarely left one perch without hopping to a new perch. We identified cache site in-

teractions by identifying periods when the bird’s beak waswithin a 2D bounding box surrounding each cache site, and below a height

threshold of 4 mm above the arena. If multiple interactions at the same site were identified within 1 s of each other, they were merged

into a single longer-duration interaction.

For the analysis in this paper, actions were further subdivided into visits, checks, caches, and retrievals. These actions occurred in

variable sequences and had different durations. For analysis of neural data aligned to these actions, we defined temporal windows

that minimized bleed-through between them.We thus examined all perch arrivals, and identified if the bird made any interaction with

the cache site before departure. Perch arrivals with no subsequent interaction of any kind were identified as ‘‘visits’’ in the main text.

To define the window of the visit, we started with a window of ±500 ms from perch arrival, and then further refined this window to

exclude confounding events. Specifically, the visit window was adjusted to begin after the offset of any interactions at other sites

occurring before a visit at this site, and the visit windowwas truncated early if perch departure occurred less than 500ms after arrival.

Neural data during visits were defined by averaging neural activity within this window.

Caches and retrievals were defined as any cache site interactions resulting in the addition or removal of a seed, following proced-

ures detailed in the next methods section. Caches and retrievals were extended events, typically lasting >1 s, with a heavy-tailed

duration distribution. We defined a window starting 250 ms before the onset of an interaction, and extending 250 ms after the offset

of the interaction. This window was further refined to start no earlier than departure from the previous perch, and to end no later than

arrival at the next perch. Finally, the window for long site interactions (>2 s, �5% of interactions) was adjusted to include only time

periods up to 1 s after onset and up to 1 s before offset, excluding the times between. Neural data during caches and retrievals were

defined by averaging neural activity within these windows.
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The majority of each bird’s site interactions were extremely brief, and involved a stereotyped motor program lasting 150–200 ms,

during which the bird lifted the rubber flap with its beak and quickly peeked at site contents. We called these actions ‘‘checks’’. In

order to ensure we were analyzing a highly stereotyped action, we used a Gaussian mixture model to classify postural timeseries

aligned to site interaction onsets. Specifically, for all site interactions that were neither cache nor retrieval, we collected the following

features derived from postural tracking: (1) height of the beak above the arena; (2) distance of the beak in the horizontal 2D plane from

the center of the cache site; (3) the vertical angle of the head, determined by the vector between themidpoint of bird’s eyes and the tip

of its beak; (4) the distance of the beak tip from the bird’s feet. We collected data for each feature as a 25-frame timeseries from�100

to +300ms relative to interaction onset. We visualized the data using tSNE embeddings andmanually defined the cluster of events in

a dataset containing 47,913 site interactions taken from 3 sessions from each of the 5 birds used for electrophysiology. We also

manually defined clusters for other less common site interaction such as long interactions, swiping the beak across the cache

site, or touching cache sites which were not matched to the perch where the bird was positioned. A Gaussian mixture model was

then defined by these features and manual labels, and used to classify all site manipulations in the dataset. Checks analyzed in

the manuscript were defined as the vast majority of site interactions (excluding those with a cache or retrieval) classified as a stereo-

typical short check by the Gaussian mixture model. The other site interactions were excluded from analysis. The window used to

average neural data for a check was from 250 ms before onset to 250 ms after offset. This window was further refined as for caches

and retrievals to exclude overlap with movement between perches.

We examined alternative criteria for defining windows for each action, including windows ranging from 250 ms to 2 s wide aligned

to event onsets. Results were not qualitatively affected by the choice of window.

Detection of caching and retrieval
In addition to tracking 3D posture, we developed neural networks for semi-automatically identifying the bird’s seed handling, i.e.,

caching, retrieving, and other interactions with the cache site. We used video from the camera positioned below the arena, which

could view the contents of cache sites through the transparent bottom. We cropped videos into 51x51 pixel bins centered on

each cache site, and trained a neural network to predict whether each site was empty or occupied by at least one seed. The network

consisted of layers with: 10 73 73 1 convolutions with stride 2, 25 33 33 10 convolutions with stride 1, 50 33 33 25 convolutions

with stride 1, global average pooling, 25% dropout, and a 10 unit fully connected layer before a 2 unit softmax classification output.

We applied ReLU activations, batch normalization, and 2x2 max pooling between layers. The classifications produced by this

network were later cross-referenced using an algorithm described below.

We also built a variant of our two-stage postural tracking approach described above in order to identify when a bird was carrying a

seed in its beak. This algorithm used the same first stage to coarsely track the bird’s head, body and tail, and to triangulate 3D po-

sition. However rather than cropping around the body, for seed carrying detection we cropped a tighter region centered on the bird’s

face. A custom network implemented in TensorFlow 283 was then used to predict for each frame whether the bird currently held a

seed in its beak. This network consisted of 25 7 3 7 3 1 convolutions with stride 2, 50 3 3 3 3 25 convolutions with stride 1, 2x2

maxpooling, 50 33 33 50 convolutions, 100 33 33 50 convolutions, 2x2maxpooling, 100 33 33 100 convolutions, global average

pooling, 20%dropout, and a single linear output. All layers used SELU activations. This network was applied to the image acquired by

each camera independently, and then outputs were summed across views and passed through a sigmoid nonlinearity to predict the

probability of a bird carrying a seed for each frame. A hierarchical network combining simultaneous information from all 6 views was

then trained end-to-end on manually annotated images.

The outputs of both the bottom camera and the seed carrying network predictions were then input to a user GUI used to annotate

all of a bird’s cache site interactions in a semi-automated manner. We used a heuristic algorithm, described below, to identify

possible interactions involving a cache or retrieval. We then generated flags requiringmanual user reviewwhenever our two indepen-

dent algorithms were in disagreement. The first algorithm detected all times when the bird began or finished carrying a seed in its

beak. If a bird gained a seed during a site manipulation, the site manipulation was proposed as a retrieval, and if a bird lost a

seed it was carrying during a site manipulation, the action was proposed as a cache. The cumulative number of seeds currently

in each site was then computed for the entire session. A second algorithm used bottom camera data, and made a prediction about

whether a cache site contained a seed immediately prior to and subsequent to the site interaction. A flag was generated if the second

algorithm detected an occupied site which the first algorithm predicted as empty, and vice-versa. A flag was also generated if a

retrieval was detected from an empty site. The GUI allowed amanual annotator to browse through all flags, viewing the full sequence

of all site manipulations and predicted seed contents at a site within that session, as well as behavioral and bottom camera video for

each site manipulation. After manual correction by the annotator, the flag detection algorithm was re-run to ensure consistency of all

bottom camera and seed carrying predictions with the updated annotations.

Design of the electrophysiology implant
We designed a light-weight implant for electrophysiological recordings during behavior. The implant was designed for use with a

64-channel silicon probe (H6 ASSY-236, Cambridge NeuroTech), glued to an aluminum drive (nanodrive, Cambridge NeuroTech).

The probe was connected to a custom built headstage that used a 64-channel amplifier (RHD2164, Intan Technologies). The head-

stage communicated digitally with a recording system (C3100 RHD USB interface board, Intan Technologies) over a digital SPI

connection (C3216, RHD ultra-thin SPI interface cable, Intan Technologies) connected to a motorized commutator (Assisted
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Electrical Rotary Joint 24_PZN12, Doric Lenses). To minimize the forces exerted by the cable, strands of a thin elastic string (1 mm

Flat Electric Crystal Stretch String) were tied to the cable to provide a low spring-constant force. The probe and drive were designed

to fit within a 3D printed protective housing (Clear Resin, Formlabs), which consisted of two components. The top component housed

the headstage, which formed its rear wall, as well as the nanodrive and the probe. The bottom component (base unit) was a small part

that attached to the skull. The entire assembly was 1.2 g (0.1 g probe, 0.46 g headstage and connectors, 0.28 g nanodrive, 0.35 g

housing).

Surgical approach
Our surgical approach consisted of two steps, detailed below. In the first step, the implant site on the brain was prepared, and base

unit of the implant was attached to the skull. In the second step, the top component of the implant was attached.

For the first step, chickadees were anesthetized using 1.5% isoflurane in oxygen. An injection of dexamethasone was made intra-

peritoneally (2 mg/kg). Fluids (0.9% NaCl, 0.1 mL every 45 min) were administered subcutaneously for the duration of the surgery.

Feathers were removed from the top of the head around the surgical site, and the surgical site was cleaned using betadine and

70% ethanol solution. The chickadee was then placed in a stereotaxic apparatus, secured by custom designed ear bars and

beak clamp. The bird’s head was aligned to stereotaxic axes by adjusting the beak clamp to 30� below horizontal. A silver ground

wire (uncoated, 0.00500 diameter) was inserted beneath the skull �1 mm anterior and 2 mm lateral to lambda, over the right hemi-

sphere. A craniotomy and durotomy were then performed covering a 1 3 1 mm area centered 3 mm anterior to lambda and

0.6 mm lateral to the midline, over the left hippocampus. A 3D printed biocompatible resin insert, consisting of a 0.2 mm depth,

1 3 1 mm square underneath a 0.3 mm depth, 1.5 3 1.5 mm square, was inserted into the craniotomy site and cemented to

bone. The insert contained a small central slit (0.4 3 0.1 mm) through which silicon probes could be later inserted. After the insert

was cemented (RelyX Unicem, 3M), the space above the craniotomy was filled with a protective layer of Kwik-Cast (World Precision

Instruments). The 3D printed base unit (Clear Resin, FormLabs) was then cemented into place, centered above the craniotomy and

secured to the skull. A removable 3D printed cap was attached to the base unit to protect the craniotomy site. Buprenorphine

(0.05 mg/kg) was injected intraperitoneally and the bird was allowed to recover for 1–2 weeks after this initial surgery.

After birds recovered from the initial surgery, a second procedure followed to implant the top component of the device. Birds were

anesthetized and given dexamethasone as above, the removable cap was removed from the base unit, and Kwik-Cast was removed

to expose the craniotomy site and the insert. Silicone gel (Dow DOWSIL 3–4680) was added to fully cover the exposed brain, insert,

and�1 mm of space above. The silicon probe and nanodrive assembly were then positioned to allow probes to advance through the

insert’s slit into underlying brain, and the nanodrive was cemented to the skull. The silicon probe and ground wire were connected to

the headstage, and the headstage was inserted into protective housing, which was cemented onto the base unit. Birds were given

1 week to recover from this implantation before continuing behavioral and electrophysiology experiments.

Electrophysiology protocol and spiking data pre-processing
We observed that neural signals degraded rapidly when silicon probes were left in neural tissue between experimental sessions. This

degradation included decreases in the numbers of units and amplitudes of spikes, as well as increases in electrode impedance. We

therefore developed a semi-acute recording protocol. Approximately 15–30 min before recording on an experimental day, the im-

planted microdrive was used to lower silicon probes to the desired depth in hippocampus. Recording depth was varied across ses-

sions in the same bird, with data reported in this manuscript pooled across depths up to 1.5 mm below brain surface. Immediately

following an experiment, probeswere fully retracted such that they rested above the brain, with their tips embedded in the silicone gel

covering the brain. Despite making repeated recordings along a similar recording track, we observed only gradual signal degradation

over weeks of recording. Probe impedances and background noise also remained low throughout experiments when following this

protocol.

Electrophysiology data was bandpass-filtered between 1 Hz and 10 kHz before digitization at 30 kHz with 0.2 mV resolution. Acqui-

sition software simultaneously recorded the digital trigger used to acquire each frame of the behavioral video, for posthoc alignment.

At each time point, the median across all channels was subtracted from all signals, and spikes were then extracted by the Kilosort 2.0

algorithm.84

For all units extracted by Kilosort, we collected a number of spike metrics used for both quality control and classification of excit-

atory and inhibitory units. First we obtained the average spike waveform, and from it calculated the spike width, asymmetry, the ratio

of the peak and trough of the spike, and the ratio of the peak and trough of the waveform derivative. We additionally calculated the

mean rate and a burst-index given by the ratio of the inverse median interspike interval and mean rate. Some of these features have

been previously used to distinguish putative excitatory and inhibitory neurons in the avian hippocampus.48 For quality control, we

calculated the spatial extent of each unit along the probe, as well as the cluster contamination rate determined by Kilosort. All units

were visualized using a tSNE embedding of these features, and manual clusters were identified for artifacts and neural spikes. A

Gaussian mixture model was fit to these manually determined clusters and used to classify all units using the metrics described

above. Artifacts had large spatial spread, high contamination rates, and/or unusual waveform shapes compared to neurons. Neurons

were subdivided into three groups. Inhibitory neurons had higher and less bursty rates, with narrower and more symmetric spikes

relative to excitatory neurons. Some neurons had properties intermediate between clearly excitatory and inhibitory clusters, and

were labeled as unclassified neurons.
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Spike times were aligned to behavioral videos, and spike counts were binned at 60 Hz. For analysis of single units, we considered

only units classified as excitatory or inhibitory neurons, with contamination rates <0.2, and mean firing rates above 0.02 Hz. For pop-

ulation analyses, we included unclassified neurons, and neural units with contamination rates up to 1.

Population firing rate deviation
To quantify deviations in firing rate, we counted, for each neuron, the number of spikes in a sliding 1 s window.We then computed the

probability of observing that spike count in a Poisson process whose rate was equal to the neuron’s average firing rate across the

session. We defined firing rate deviation as the negative log of this probability. This value was low whenever the neuron was firing

close to its average firing rate; it was high whenever the neuron was firing either above or below its average rate. To compute the

population firing rate deviation, we summed values from all neurons and z-scored the result across the session. To measure popu-

lation firing rate deviation for a specific event (cache, retrieval, check, or visit), we used the 1 s window centered at the offset of

the event.

Single-neuron place and cache tuning
Placemapswere obtained by smoothing visit data to each perchwith a LOESS quadratic model (MATLAB function fit type loess, with

span 0.4). To quantify the significance of place tuning, we generated 1000 shuffle samples by circularly permuting neural data relative

to the sequence of visit locations. For both the real data and the shuffled samples, we computed the standard spatial information

index in bits per unit time.87 A cell was considered to be a place cell if the spatial information for the real data exceeded 95% of

the shuffles, computed separately for each neuron.

To quantify the sparsity of cache responses, we calculated the fraction of caches for which a neuron’s firing rate was above its firing

rate averaged across the entire session. For most excitatory neurons, which had average rates <1 Hz, this threshold was surpassed if

any spikes occurred during a cache. Again, we compared this fraction to 1000 shuffled data points. In this case the shuffle distribution

was generated by circularly permuting cache times relative to neural spike times. We used the 5th and 95th percentiles of the shuffled

distribution to classify neurons as significantly suppressed or enhanced.

Population vector correlation-based analyses
We normalized each unit’s firing rate for population analyses by first subtracting its baseline rate, computed as a running 30 min

average. After baseline subtraction, we divided firing rate by its standard deviation, which was regularized by adding a small number

(0.6 Hz). Most analyses of barcodes and reactivation used a similar analysis framework based on correlating pairs of neural popu-

lation vectors for two events in the same session. For all analyses, before calculating correlations, themean across all instances of an

action (i.e., across all locations) was subtracted from each instance. For example, the mean across all caching events in a session

was subtracted from each caching event. Pairs of events separated by less than 1 min were excluded from the analysis. To obtain

standard errors, the analysis was repeated 100 times while resampling with replacement the 54 sessions included in the full dataset.

An exponential function with independent parameters for baseline, tau, and amplitude were fit to the data, excluding correlations

between events at the same site involving any non-visit action. For analyses involving linear mixed-effects modeling, we used fitlme

(MATLAB, 2022b) to fit the model and perform t-tests on the significance of each fixed effect.

The robustness of spatial coding is typically assessed using data averaged over long periods of time – e.g., correlating spatial maps

from one-half of a behavioral session to another.48,88 For typical session durations and smoothing parameters, these kinds of analysis

in the hippocampus have produced average correlation values of �0.5. Repeating these analyses for our dataset produced similar

values. However, analysis reported in this paper is unusual in that it samples spiking during very brief single events, lasting �1 s. As

expected from the variability of single trial spike counts in brief windows, the resulting correlation values weremuch smaller (0.024 for

the average visit-visit correlation across the dataset). All population vector correlations in the manuscript were multiplied by a con-

stant factor (40.95) such that the value of the exponential curve for visit-visit correlations at the same site was exactly 1.

Place code subtraction
We developed a method to estimate and remove the place code from caching data, in order to isolate the barcode component of

activity during caching. For each site in the arena, we first estimated the place activity of each cell, by holding out that site and

smoothing data from all perch arrivals at other sites using a LOESS quadratic model (MATLAB function fit type loess, with span

0.4). For this estimation, we included data from all perch arrivals including both those with and without site interactions. This proced-

ure thus uses data from all other locations in the arena to estimate the smooth spatial component of a neuron’s activity, while

excluding any contribution from site-specific activity during actions at a particular site. Place activity values across all neurons

were combined into a ‘‘place vector’’ defined at each site. The mean value for each neuron across sites was subtracted, similarly

to the way cache activity had been mean-subtracted, and place vectors were normalized to unit length. Finally, we computed the

projection of cache activity onto this unit vector and subtracted it from the cache activity. This procedure avoids assumptions about

how consistent the strength of place codingwas across caches, sessions, and birds. ‘‘Barcode’’ activity in this paper refers to activity

during a cache after this place subtraction procedure.
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1D behavior on a circular track
For 1D behavior, an arena was constructed similarly to the 2D arena described above, but with only 20 perches arranged in a circle of

49.1 cm diameter. Perches were oriented tangentially to the circle. The arena was positioned in a square 60 3 60 cm enclosure.

Motorized feeders (3D printed, white resin) were placed in the corners of this enclosure, on the outside of the circular track next

to four of the perches. On top of each feeder was a small well filled with water, which was available at all four feeders even when

the feeders were closed. Cache sites were placed on the outside of the track next to the other 16 perches, centered at 52.8 cm diam-

eter. This dimension meant that the midpoints between the perches and sites were on a circle of circumference 160 cm—i.e., we

considered 8 cm to be the arc distance between two adjacent sites. The cache sites used a previously published,34 version of the

design.

Each bird was typically recorded in 12 sessions on separate days, with at least one day of rest between sessions. One of the

feeders was chosen as the ‘‘rewarded’’ feeder for the first three sessions, then a different feeder was chosen for the next three ses-

sions, and so on. For each bird, the four feeders were rewarded in a different random sequence. Each session started with the feeder

closed for 10 min and �3 of the sites baited. The rewarded feeder was then opened for 5 min every 30 min for the duration of the

1.5–2 h session.

One camera (Edmund Optics, EO-2323C) wasmounted on the ceiling of the enclosure and used to monitor the position of the bird.

Do detect position, we used a neural network89 trained on the center of the bird’s head. A second, identical camera was mounted in

the wall of the enclosure. A third camera (Edmund Optics, acA2500-60uc) was mounted under the floor of the arena and used to

monitor the contents of the caches. Caches, retrievals, and checks in the 1D arena were detected using a semi-automated annota-

tion procedure.34

Calcium imaging
Experiments on the circular track were performed before our lab had developed technologies for silicon probe recordings. For these

experiments, we used calcium imagingwith headmountedmicroscopes. Calcium imaging did not allow some of the analyses that we

performed in the 2D arena (e.g., analysis of inhibitory cells or the highly temporally precise analyses of neural dynamics). However, it

provided comparable numbers of recorded cells per session and could be used for analyzing the spatial code – which was the main

purpose of the circular track.

Surgery for calcium imaging consisted of injecting a virus containing GCaMP6f, as well as implanting a GRIN lens and baseplate,

using procedures previously described.50 Anesthesia, initial preparation of the bird, and analgesia were done as for silicon probe ex-

periments described above. Six small holes were drilled through just the top layer of the skull, for the purpose of anchoring the

implant. The main craniotomy was then made, centered at 3.25 mm anterior and 0.7 mm lateral to lambda. Before the craniotomy

on the inner layer of skull, an antibiotic solution (Baytril 3.8 mg/mL) was applied to the surface of the skull for 5 min, then wicked

away. Insect pins were inserted through neighboring pairs of the anchor holes, and both the insect pins and the anchor holes

were covered with cement (D69-0047, Pearson Dental). The craniotomy and durotomy were then completed.

Birds were injected with the AAV9-CAG-GCaMP6f-WPRE-SV40 virus (100836-AAV9, Addgene). The total amount of virus in-

jected was 897 nL (65 injections of 13.8 nL each), using a Nanoject II (Drummond Scientific) with a pulled glass pipette tip.

Throughout the injection, the surface of the brain was covered in Kwik-Sil (World Precision Instruments). There was a 10 s waiting

period between injections, and a 25 min waiting period after the final injection, before withdrawing the pipette and removing the

Kwik-Sil.

Before implanting the GRIN lens, the head was angled into a typical chickadee resting head posture (beak bar approximately 10�

below the horizontal). A GRIN lens (1 mm diameter, 4 mm length, 1050–004595, Inscopix) was implanted directly over the injection

site, any remaining exposed brain was covered with Kwik-Sil, and the lens was anchored in place using cement (D69-0047, Pearson

Dental). Next, a baseplate was positioned into a good focal plane with the Inscopix miniscope (focusing slightly below the brain sur-

face, with the miniscope objective approximately 300 mm above the surface of the GRIN lens), and the baseplate was cemented in

place. The surface of the cement was covered with black nail polish to prevent light contamination.

Inscopixmicroscopes have a heavier cable than our silicon probe implants. To support theweight of the cable, birdswere therefore

fit with a leg-loop harness90 two weeks after surgery. The harness remained permanently on the bird and consisted of a 3D-printed

plastic attachment for the cable (203 103 6mm) pressed against the bird’s back and two loops of elastic string (39mm for each leg,

Outus Elastic Cord) that were hooked onto the bird’s thighs. During behavioral sessions, the microscope was snapped into the mag-

netic headplate, and the cable at a point �13 cm from the microscope was attached to the harness.

Analysis of calcium imaging data
For analysis of calcium imaging data, we use procedures previously described.50 Imaging data were collected at 20 fps. Neuronal

traces were extracted from raw fluorescence movies using a constrained non-negative matrix factorization algorithm intended for

1-photon calcium imaging data (CNMF_E85,91). We used a multi-scale approach92,93 to extract stable fluorescent traces from long

videos (2 h in our case). Before applying CNMF_E to the raw videos, we applied a motion correction algorithm.94 The vast majority

of data contained no motion above 1 pixel RMS shift.

The multi-scale CNMF_E approach was run in three steps. First, data were averaged in bins of 20 frames, then temporally down-

sampled by a factor of 20. Cell footprints were found in the downsampled movie using the standard CNMF_E algorithm. These
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footprints were then used to extract temporal traces on segments of the non-downsampled data. Finally, the raw traces were decon-

volved to detect the time and amplitude of each calcium event. To eliminate some infrequent imaging artifacts, any calcium events

with an amplitude greater than 1.5 times larger than the 99th percentile of all calcium events for that cell were eliminated from all an-

alyses. For all firing rate calculations in the paper, events were weighed by their amplitude.

Effects of caching on the place code
To determine the effect of caching on spatial tuning, we used data from the circular track described above. For most analyses, the

bird’s position was classified as being at one of 20 sites if the radius from the center of the arena was between 19.75 and 30 cm, and

the angle waswithin ±9� from the center of the perch of the site. For the distribution of place fields shown in Figure 4, the circular track

was instead divided into 60 segments 6� wide, with every third segment centered on a perch.

For each cache and each cell, we first calculated the spatial tunings of the cell before and after the cache. For pre-cache tuning, we

used the time period starting at the last cache or retrieval that previously occurred at the same site; if no such event occurred, the

period started at the beginning of the session. The period ended 5 min before the cache. For post-cache tuning, the period started

5min after the cache and ended at the next cache or retrieval, if such existed, or at the end of the session. Periods of 5min before and

after the cache were excluded because behavior during these periods was typically very different from other parts of the session

when the bird moved mostly consistently around the circle. We also excluded periods of ±500 ms around checks during both the

pre- and the post-cache periods. For both periods, we determined the number of calcium transients and the behavioral occupancy

at each of the 20 sites in the arena. If any site had <1 s occupancy either before or after the cache, the cache was excluded from the

analysis. Calcium transient counts and occupancy were each smoothed by a 3-point square window, and firing rates were calculated

by dividing smoothed counts by smoothed occupancy values.

We compared pre-cache and post-cache tuning using four metrics. The first metric was the relative difference in peak firing rates,

measured as the absolute difference between pre and post values, divided by the average of those values. For this analysis, peak

firing rate was defined as the maximum of the 20 values across sites. For the remaining metrics, we only included cells whose

peak firing rate was >1 event/s in both the pre and post periods. The second metric was the absolute difference in the positions

of the peaks in spatial tuning, measured as the length of the shortest arc around the circular track between these positions. The third

metric was the relative difference in the widths of the tuning curves, again measured as the absolute difference divided by the mean.

Width was defined at half of the maximum of the tuning curve. The fourth metric was the cross-correlation of the pre and post tuning

curves.

To compute statistical significance of each of the four metrics, we generated 100 shuffle samples in which the entire set of times

included in the pre and post periods was shifted in time by a random amount, but ensuring that the entire pre and post periods

continued to overlap with the session. The 99% confidence intervals for each of the metrics were then computed as 2.8 standard

deviations of this shuffle distribution.

Seed tuning
We determined the significance of the modulation of each neuron’s activity during checks by the occupancy of the site. For each

neuron, we generated single trial responses by calculating firing rate in the window from 100 to 1000 ms from each check onset,

and subtracting the baseline rate in the 1000 ms before check onset. These difference were then separately averaged across all

checks of empty sites and all checks of sites occupied by a seed. Seed tuning was calculated as the difference between the average

occupied and empty responses. To determine significance of this tuning, we generated 1000 shuffle samples by circularly permuting

site occupancy assignment (occupied or empty) with respect to neural data during the checks.

Population projections of place code, barcode, and seed code
To obtain the time course of population coding for place, barcode, and seed components, we defined three population vectors. The

population vector for seed coding was defined as the difference in check responses for occupied versus empty sites, using the pro-

cedure described above, measured across all neurons. The place code vector was defined as that obtained using the leave-one-out

procedure described above for place code subtraction. The barcode vector was defined as the average barcode activity (i.e., activity

during caches after place code subtraction) across all caches at a site. All projections were cross validated by recomputing vectors

for each event while holding out the data to be projected. Standard errors were computed by 1000 bootstrap samples, drawing with

replacement from the 54 session-averaged projection time courses.

Histology
After completion of the experiments, animals were administered ketamine and xylazine (10 mg/kg and 4 mg/kg respectively), then

transcardially perfused with 1X PBS followed by 4% paraformaldehyde in PBS. The brains were extracted and stored in 4% para-

formaldehyde in PBS for 2 days. They were then sectioned coronally into 100 mm-thick slices, stained with fluorescent DAPI (300 nM

in 1X PBS, D1306, Invitrogen) and mounted in Vectashield mounting medium (H-1400-10, Vector Laboratories). Slices were imaged

with an epifluorescence microscope to confirm recording locations.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Unless a conventional statistical test is specifically noted, statistical quantification of error was performed using a bootstrap. Spe-

cifically, we selected 54 sessions randomly with replacement from the full set of 54 sessions. Analyses were then performed on

this resampled data, and the process was repeated 100 times. The standard deviation across bootstrap samples was reported

as the standard error of the mean in all figure panels. Unless otherwise noted, statistical quantification of significance was performed

using a shuffle-based procedure described in the appropriate method details subsection. No experimental subjects were excluded,

and data from all sessions from all subjects were included unless the bird made less than 30 total caches in a session, we identified

less than 50 units in electrophysiological data, or data were otherwise corrupted.
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Figure S1. Birds used sites across the entire behavioral arena, related to Figure 1

(A) Behavioral trajectory plots for 20 example sessions. The bird’s 2D body position is plotted in gray, and each cache site is overlaid with color and size indicating

cache site usage. Each row of plots is sessions from one of the five birds in this study. Four example sessions are shown for each bird, sorted from highest (left) to

lowest (right) by the entropy of the distribution of perch arrivals.

(B) Fraction of sites visited by a bird within each session, n = 54 sessions. Dashed line is median.

(C) Entropy of the within-session distribution of perch arrivals across all 128 sites.

(D) Cumulative probability of the within-session distribution of perch arrivals after sorting sites for each session frommost to least common. Solid line and shaded

area are mean and 25th–75th percentile intervals across all 54 sessions. Birds were not encouraged to use sites evenly and exhibited diverse and variable spatial

biases but nevertheless visited and cached at most sites in the arena.
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Figure S2. Caches elicited distinct hippocampal activity, related to Figure 1

(A) Behavioral tracking variables used in action identification for one example session. For each arrival at a new perch, heatmaps show from left to right the speed

of the centroid between the two feet, the lateral distance between the foot centroid and the centroid of the new site’s perch, the height of the beak tip above the

arena surface, and the lateral distance of the beak tip from the centroid of the new site’s cache site. The color of each heatmap ranges from 0 to the maximum

indicated in each plot’s title. Arrivals are grouped by the identified action, indicated on right.

(B) Flowchart schematizing the action identification algorithm. The algorithm beginswith identification of a hop between perches and proceeds through a series of

binary decisions, with the frequency of both outcomes across the entire dataset indicated. Action times are aligned to the hop or to the site interaction if identified.

See STARMethods for full definition of algorithm and temporal windows. The vast majority of events were classified as one of the four actions (visit, check, cache,

and retrieval) analyzed throughout the manuscript.

(C) Population firing rate deviation for all caches and visits in the example session from Figure 1D. Left: each event is plotted against event duration. Visit events

are colored by whether the bird was carrying a seed in its beak (light) or not (dark). Deviation was measured in the 1 s window centered at event offset or at the

midpoint of the visit for visits exceeding the median cache duration. Right: population firing rate deviation as a function of distance from the nearest feeder. The

increased population firing rate deviation for caches compared to visits is not accounted for by variables such as event duration, seed carrying, or arena position.

(D) Population firing rate deviation for caches and visits segregated by control variables. Visits within each session were split in two in a series of three com-

parisons. First, visit durations were compared to the median total latency from perch arrival to cache offset in that session. For visits with shorter duration

(‘‘short’’), deviation was measured at visit offset. For visits with greater duration (‘‘long’’), deviation was measured at the latency matching cache offset. Second,

visits were split by whether the bird was carrying a seed in its beak when arriving at a site (‘‘with seed’’) or not (‘‘no seed’’). Third, visits were split by whether they

occurred at sites closer (‘‘near’’) or farther (‘‘far’’) from the nearest feeder than thewithin-sessionmedian across visits. Box andwhisker plots show the distribution

of within-session medians across all 54 sessions, computed as in Figure 1E. Whiskers range from minimum to maximum, boxes are 25th–75th percentile, line is

median, notches indicate significant difference in the median at 5% level if notched intervals do not overlap. Caches exhibited population firing rate deviations

much greater than visits in all cases.
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Figure S3. Individual neurons showed typical place tuning, related to Figure 2
(A) Place maps for 112/116 single units recorded in an example session; for figure layout reasons, four silent neurons are not shown. Neurons were sorted into

eight rows by the average firing rate and then within each row by low-to-high spatial information from left to right. Each plot’s color ranges from 0 to the place map

maximum shown in title or to 1 Hz for neurons with map peaks below 1 Hz. Neurons with high firing rates were often interneurons.

(B) Place maps for 33/43 excitatory place cells, randomly selected from the same example session. Maps were computed on separate halves of the data after

segmentation into non-overlapping 5min periods, as in previous studies.48 Unlike in the rest of the manuscript, where placemaps are computed for visits at each

site and interpolated for display purposes, place maps in (A) and (B) are computed following convention for analyzing open-field data48 to simplify comparison.

(C) Stability of spatial tuning for all single units; dashed line indicates median. Maps were computed on separate halves of the data after segmentation into non-

overlapping 5 m periods.48 Place maps for each half were computed for visits at each site, and the Pearson correlation was computed between the two maps.

Histograms are shown separately for neurons that did not (top) or did (bottom) pass the shuffle-based place cell criteria used throughout this manuscript. Note

that spatial stability was not used to define whether cells were place cells. Spatial stability in our data was similar to values reported in previous studies.48

(D) Spike counts on individual visits for the six example neurons in Figure 2A. Plots follow the same convention as Figure 2A, where trials with above- or below-

average rates are colored red or blue, respectively. The spatial information in bits/spike and the significance of spatial tuning compared to shuffle is indicated in

plot titles. For excitatory neurons (first four from left), visits were divided into out-of-field and in-field visits, shown to the left and right of the dashed line. ‘‘In-field’’

was defined as sites where the placemapwasmore than one-fourth of themaximum, and ‘‘out-of-field’’ was defined as sites where the placemapwas equal to or

below the map median; the small number of remaining visits are not shown. Excitatory place cells (e.g., second neuron) showed large variability in spike count

between repeated visits of in-field sites. Inhibitory neurons (last two) did not show consistent increases or decreases in rate during visits, unlike changes observed

during caching (compare to Figure 2A).
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Figure S4. Place coding and barcoding are randomly mixed in hippocampal activity, related to Figure 3

(A) Analysis activity during caching as in Figures 2B and 2C but separately for place and non-place cells. Left: fraction of caches on which a neuron responded

(i.e., exceededmean firing rate). Right: comparison of cache responses to shuffle distribution. Both place and non-place cells were sparsely active during caches,

although place cells were less sparse, likely because they also exhibited place activity during caches within their place fields. Both place and non-place cells had

large bursts of activity during caches.

(B) Population vector correlation of neural activity between cache and retrieval pairs as a function of distance. Analysis as in Figure 4G but using only inhibitory

neurons (top) or without inhibitory neurons (bottom). Results were similar, demonstrating a combination of smooth spatial tuning and reactivation of a site-specific

barcode.

(C) Fraction of neurons with a significant barcode-retrieval correlation for a range of p values. Single-neuron barcode-retrieval correlation was calculated by

computing barcode activity as described in the main text and assembling a vector for each neuron of its barcode activity across all sites (averaging across

multiple caches at a site when applicable). A similar vector was assembled for retrievals, and vectors were then correlated across all sites with at least one cache

and retrieval. Significance was determined by comparing correlation to values obtained after randomly permuting the barcode and retrieval vectors. Dashed

vertical line is p = 0.05. The analysis is repeated for all neurons grouped by cell type (left) and all excitatory neurons grouped by place tuning significance (middle).

The analysis was also repeated for all excitatory place cells (right) after evenly dividing the arena into sites near or far from the neuron’s place field maximum.

Barcode tuning was similar in all cases.

(D) Left: spatial information of a neuron’s place map plotted against single-neuron barcode-retrieval correlation. Spatial information was normalized by dividing

the raw value by the mean of the shuffles. The plotted relationship was very weak (r = 0.058, p = 0.004, Spearman’s correlation). Right: barcode-retrieval cor-

relations after dividing the arena into halves either closer to or farther from the maximum of each place cell’s firing field. Place cells participated in barcodes near

and far from their place fields, although there was a small but significant difference in mean correlation (near, 0.17; far, 0.14; p < 0.01, t test). Barcode activity was

thus mostly unrelated to the strength and location of place tuning.

(E) Population decoder performance. The decoder converted a population vector correlation between two events to a binary prediction of whether the events

occurred at the same or different sites. A receiver operating characteristic (ROC) plot of performance across thresholds is shown with the area under the curve

(AUC) for visit-visit and cache-cache pairs. During caching, there was an elevation in site-specific activity compared to visits.

(F) Population vector correlation between a barcode and activity during other events at the same site. For visits, this was also computed for the subset where a

bird was carrying a seed in its beak (‘‘seed-carrying’’). This was also computed for visits with duration at least as long as retrievals, using the latency and duration

of the median retrieval on that session (‘‘duration-matched’’). ‘‘Eating’’ events used a window of equal duration to visits, centered in the middle of an eating bout.

Barcode reactivation was much greater for events involving site interactions (caches and retrievals) than those without interactions (visits and eating). Error bars:

SEM computed by bootstrapping data from all 54 sessions.
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Figure S5. Sharp-wave ripples did not occur during caching, related to Figure 2

(A) Ripple-band magnitude (100–200 Hz, as in Payne et al.48) plotted for 1 h of an example session. Linear speed of the centroid between the bird’s feet plotted

above, along with binary indicators of whether the bird was caching, eating, or in a moving state (the latter defined as in Payne et al.48). As in rodent studies, large

transient bursts in ripple magnitude (SWR, above �5 SD) occurred when the bird was not moving, often during eating bouts. Similar events were not observed

during caching.

(B) Latency between onset of an SWR (left) or a cache (right) and the bird’s last hop to a new perch. Caches typically occurred <0.2 s after arrival, whereas SWRs

occurred >1 s after arrival. Thus, caches and SWRs occurred at characteristically different times, during active behavior and during immobile periods,

respectively. Because local field potentials in some birds and sessions were contaminated by movement or other artifacts, SWRs for this analysis were detected

by summing spike counts across all units in 1/60 s bins and identifying threshold crossings above 5 standard deviations. This count was highly correlated (r�0.8)

with ripple-band magnitude in sessions with clean local field potential signals, consistent with previous literature. Data from 28/54 sessions that had at least 92

recorded units.

(C) Probability of an SWR as in (B), aligned to cache onset times. Dashed line is the rate of SWRsmeasured during immobile periods. SWRs did not reliably occur

during caching, and SWRs were far more likely to occur during immobile periods than during caching. Line and shaded area: mean and SEM, calculated by

bootstrap resampling 28/54 sessions with at least 92 units.
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(legend on next page)

ll
Article



Figure S6. Barcodes changed with experience at a cache site, related to Figure 5

(A) Black curve: autocorrelation of population vectors calculated on non-overlapping 1.25 swindows. Orange curve is a time-cropped version of Figure 5B. Neural

activity was similarly correlated on a timescale of <5 min, regardless of what the bird was doing. This decay is therefore not a feature of barcodes.

(B) Coefficients of a linear mixed-effects model of the correlation between two cache barcodes at the same site. The model contains random effects for each

session (not shown) and fixed effects for the duration of time between caches, the number of intervening caches/retrievals/checks, and nonlinear interactions

between duration and each intervening event count. Coefficients are without units since variables were Z scored before model fitting. All coefficients were

significantly different from 0 (p < 0.001), except the linear term for intervening retrievals (p = 0.082). Model coefficients were consistent with effects shown in

Figures 5A and 5B. Specifically, barcode correlations were reduced by both the number of intervening caches and the time between caches. The strongest

coefficient was a negative interaction between duration and intervening caches, meaning that decorrelation between barcodes was particularly strong when

caches were separated by both a long interval and multiple intervening caches.

(C) As in (B) but for barcodes and retrievals at the same site, with fixed effects for the duration between events, whether the retrieval was after or before the cache,

and a nonlinear interaction between the two. Barcode-retrieval correlations were greater for retrievals after a cache than before (p < 0.001) and decreased for

longer intervals (p = 0.01). The interaction term was negligible (p = 0.69), implying that the post-cache increase in correlation was temporally stable, consistent

with results in Figures 5C and 5D.

(D) As in (C) but for barcode-check pairs. All coefficients were significantly different from 0 (p < 0.001), consistent with results in Figures 5E and 5F.

(E) As in (D) but only for pairs where the cache preceded the check with no intervening caches and with fixed effects for duration, whether an intervening retrieval

had occurred, the number of intervening checks, and nonlinear interactions between duration and the other two variables. The negative coefficient for retrieval

(p < 0.01) and its positive interaction with duration (p = 0.016) implies that barcode-check correlations were lower after the cache was retrieved, particularly if the

duration between cache and check was brief, consistent with results in Figure 5F. We additionally observed effects of duration and intervening checks (p < 0.001)

with an insignificant interaction (p = 0.68).

Error bars in all panels: SEM.
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Figure S7. Place, barcode, and seed tuning were coordinated with behavior, related to Figure 7

Projections of neural activity onto dimensions of place, barcode, and seed tuning. Projections are plotted for visits, checks, caches, and retrievals aligned to onset

and for caches and retrievals aligned to offset. Projection values were scaled by a constant across all 18 plots such that the place projection for visits at time 0was

equal to 1. For seed projection plots, only data for occupied visits and checks are shown (see Figure 7 for empty visits and checks). The temporal sequence of

place, barcode, and seed tuning during checks (of occupied sites) resembled a time-compressed version of that seen during caches, reflecting their briefer

duration. Shaded region is SEM with bootstrap resampling, n = 54 sessions.
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